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1. Introduction

The problem explored in this paper will be fully theoretical however, it is based on a real
situation. Given a light source above an object placed on some surface in otherwise completely
dark room the given object will cast a shadow. A particular case of this phenomenon can be
observed when a lamp is placed above a rugby ball causing an elliptical shadow to be cast. This
leads to a question how could the area of this elliptical shadow be modeled in the relation to the
height of the lamp. The first question that needs to be answered when considering such a
question is what theoretical geometric figure would best represent a rugby ball. The object that
chosen to represent the rugby ball was a prolate spheroid as it best fitted its shape. Spheroids
also known as ellipsoids of revolution are obtained by rotating a ellipse about one of its axes
(Torge, Miiller, 2012). In this context it is important to define what is a ellipse and what is it’s
equation that describes it in the Cartesian plane. Ellipses are part of a set of non-degenerate
conics. “The non-degenerate conics can be defined as the set of points P in the plane that satisty
the following condition: The distance of P from a fixed point (the focus) is a constant multiple
e (the eccentricity) of the distance of P from a fixed line (the directrix).”(Brennan, Esplen,

Gray, 2012).

This definition is quite complex and needs further explanation. Firstly conic sections such as a
ellipse have a center. This means that there is a point C such that a rotation about this point by
the angle z is a symmetry of the conic (Brennan, Esplen, Gray, 2012). Secondly, we define a
constant value e as the eccentricity. The eccentricity is the deviation of the shape of a conic
section from a circle. The eccentricity is of a circle is 0. An ellipse that is not a circle is defined
to have a value of eccentricity between 0 and 1. Thirdly we define the point C as the midpoint
of the line segment joining two fixed points defined as F'/ and F2. These points are the foci of
the ellipse. Now we define a line segment passing through these two points with a constant

distance defined as 2a which is greater that the distance between F/ and F2 and it’s midpoint
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being point C and also being colinear with F/and F2. Basing on this information we get that
the coordinates of FI are (ae,()) and analogously the coordinates of F2 are (-ae,()). Now we
define a vertical line (directrix) as x = S and a point M on that line. Now from the definition

of the ellipse we know that the distance between P and M is a constant multiple of the

eccentricity. Hence:
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Figure 1.: 2 dimensional graphic of an ellipse with the equation: 2tz = 1, considered in

the exploration (all figures created using GeoGebra analytical software)

Knowing all this we derive the standard equation of an ellipse:
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If we substitute a coefficient b for a’(1-e?) we will obtain:



x2 yZ
2 =1

In the case of this exploration the values of a and b are:

(-1

Due to the theoretical nature of this exploration these values are chosen arbitrarily.

Hence the equation of the ellipse considered in the exploration is given by:

The equation of eccentricity can be simply derived from the standard equation of an ellipse.

By substituting the chosen values of @ and b we obtain the eccentricity of the ellipse considered

in the exploration:

We can now approximate this by using the GeoGebra online scientific calculator

(https://www.geogebra.org/scientific?lang=pl), all other approximations are also computed

using this software:

e~ 0,866 (3s.f.)


https://www.geogebra.org/scientific?lang=pl

This value fits the previously stated value of eccentricity defining an ellipse. The value of the

eccentricity is rounded to 3 significant figures as per convention.

Now we must answer the question how to accurately represent the prolate spheroid in 3

dimensional space.

To answer this question firstly we need to answer the question what the x-axis, y-axis and z-axis
represents. We will define the x-axis as the length, y-axis as the height and z-axis width. Length,
height and width are distances hence are real non-negative numbers. Secondly given a standard
equation of an ellipse in terms of the semi-major axis @ and semi-minor axis b. We can extend
this concept into a 3 dimensional space by rotating the ellipse about its semi-major axis a. This
procedure leads us to obtain a prolate spheroid. In figure 2 we can see the graphic of the prolate
spheroid with set values which will be investigated in the exploration. Equation of the prolate

spheroid considered in the exploration:
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Figure 2.:3 dimensional graphic of a prolate spheroid with the equation:

This “MM’s" like shape is the prolate spheroid. Its semi-major axis a is parallel to the x-axis
while the two semi-minor axes (b;=1, b>=1) are parallel to the z-axis and y-axis respectively.

The spheroid defined by the previous equation and shown in figure 2 is also translated by a

0
v =1
0

This translation is done to fit the real world interpretation of this problem because if the ellipse

vector vy.

was only rotated by its semi-major axis half of the spheroid would be under XZ-plane that is
considered the “ground” in this hypothetical problem hence it is translated by such a vector v;.
The entire spheroid has positive y-coordinates and is tangent to the XZ-plane in the point with
the smallest y-coordinate. These restrictions on the problem provide a clear interpretation of

where the spheroid is and what are its dimensions.
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Figure 3.: 2 dimensional cross-section along the x-axis of the prolate spheroid

In figure 3 we see the prolate spheroid “cut” along the x-axis giving us a clear view of the

original ellipse used. We see that the dimensions of the spheroid being 4 units in length and 2

units in height.
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Figure 4.: 2 dimensional cross-section along the z-axis of the prolate spheroid

In figure 4 we see the spheroid being “cut” again this time along z-axis giving a clear view of
its dimensions. Being 2 units width and 2 units in height which matches up with the previous

cross-section.

The overall dimensions of the sphere are 4 units in length (x-axis), 2 units in width(z-axis), 2
units in height (y-axis). In the cross-section along the x-axis the spheroid is a ellipse and in a

cross-section along the z-axis it is a circle.

The equation of the ellipse in the x-axis cross-section:

x2 _12
=D

22 12 1

The equation of the circle in the z-axis cross-section:

x’+(@y—-1% =1



Now we must answer the question how to accurately model the position of the light above the
spheroid and how to approach the modelling of the “light rays” casting the elliptical shadow on

the XZ-plane.

The equations describing the cross-sections will be used to calculate the lengths of the semi-

major and semi-minor axes of the shadow to obtain its area.

Now we must consider the light source. It is important to establish the position of the light

source and how its height will be manipulated.

The light source in the 3 dimensional space is assumed to be a point L. This point lies on the y-
axis and has coordinates L(0, m+2, (). The parameter m is introduced as a variable describing

the relative height of the point to the spheroid.

To obtain the “shadow” of the spheroid we draw tangent lines from the point L to the spheroid.

We also have to assume that the parameter m has to be positive as distance cannot be negative.

We define that:

m € (0, +00)

In figure 5 we can see the visualization of the “light rays” being tangent lines from point L to

the prolate spheroid.
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Figure 5.: 3 dimensional visualization of 4 “light rays” being tangent lines and the distance
parameter m

The function describing the shadow of the spheroid will be dependent on the value of the
parameter m. As m increases the area of the shadow will decrease. As m decreases the area of
shadow will increase. In figure 6 we can see the ellipse created by the light rays and with its

semi-minor axis marked as D and the semi-major F.
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Figure 6.: Example of a elliptic shadow formed by the tangent lines (light rays) with its semi-
minor and semi-major axes marked as D and F

The aim of the investigation is to find such function of m that describes the relationship between

m and D and F because an area of a ellipse is defined as:
Aellipse = mab

where a and b are the lengths of the semi-major and semi-minor axes respectively (Toomer,
1990). In the case of the shadow the semi-major axis a will be /" and semi-minor axis b will be

D. Hence the function that we seek to derive is given by the equation:

fm)=m-F-D
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2. Plan for solving the problem

To determine the values of the semi-major axis F of the shadow and the semi-minor axis D we
will need to consider two cases. The values of ' and D are needed to calculate the area of the

shadow.

e In the first case, we will consider the cross-section shown first in figure 4 with its
corresponding tangent lines (“light rays™). Using trigonometry it is possible to find the
semi minor axis D.

e In the second case, we will consider the cross-section first shown in figure 3 with its
corresponding tangent lines (“light rays”). By using derivatives of the ellipse, the
Fundamental Theorem of Calculus and the Similarity of Triangles Principle it is possible
to generate a system of equations relating F to the values of x. To solve for m we find a
relation of the derivative tangent function to the transformed equation of the ellipse. We
then find zeros of such equation and substitute them into the previously given system of

equations giving the relation of F'to x.

3. Determining the function.

3.1 First case concerning a circle cross section.

In the first case we consider the situation in figure 7 (circle case) to determine the length of D.
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Figure 7.: Circle case needed to calculate D, where b=1. All other values shown are
exemplary.

First we know from trigonometry that:

sin(f) = =7

This is because the tangent line creates a right angle with the radius of the circle and we know

that the radius is equal to 1.

By rearranging:
_ 1 —sin(p)
sin(B)
Where:
B #knk€eZ

We exclude such values from the domain because such angles are impossible in this case and

also would lead to dividing by 0.
13



Then again from trigonometry we know that:

D

tan(f) = 5——

We can rearrange this equation and substitute the first equation to it to obtain D.

tan(p) - (2 4 L1osinG )> -D

sin(B)
This simplifies to:

3 sin() + 1
~ cos(B)

However now we must substitute the angle to find D. We can do this by taking the arcsine

function of’

sin(f) = =7

Which is equal to:

) 1
arcsin =
(o) =
Now we substitute the arcsine function into to the previous equation. Now knowing that:
sin(arcsin(t)) =t

cos(t) = +4/1 — sin?(t)

We also know that the angle between m and the tangent line is always acute hence we only

consider positive value of the square root. By using these previously stated identities we get:
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After simplification:

2+m)|lm+ 1|

b= (m+1)/(m+1)2-1

This is the final solution in the circle case. This equation relates the length of the semi-minor

axis of the shadow to the length of m which describes the height of the light.

3.2 Second case concerning a ellipse cross-section

In the second case we will consider the situation presented first in figure 3. To solve for F a

system of equations with 4 equations and 5 unknowns describing the situation will be needed.
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Figure 8.: Ellipse case, where all values shown on the axes are examlary.

Firstly we rearrange the equation of an ellipse:
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To yield:

V4 —x2+2
y=f

This equation relates the position of point U seen in figure 8 to the value of x. This equation
will the first one in the system of equations. To obtain the second equation we can calculate the

derivative of this function to yield a equation of the tangent line to the arbitrary point U.

d (V4 —x2+2
dx 2

By taking out constants and applying the power rule in conjunction of the chain rule we get

that:

)
2

This simplifies by again applying the power rule and taking out the constants to:

d (VA—x?+2\  —x
dx 2 N

From the Fundamental Theorem of Calculus we know that the derivative is equal to the tangent
line to a point on a curve. Using this and the fact the slope of a line is given by the tangent of

the angle between the line and the x-axis (seen in figure 8) we determine that:

. +T[ _d V4 —x2+2 B —X
an(a 2)_dx 2 oA — x2

This yields a useful equation that will be used in the system of equations however:

tan (g) = undefined

16



To simplify and improve clarity we change the tangent function using the co-function and even-

odd trigonometric identities into cotangent function:
/0
tan(a + E) = cot(—a)

cot(—a) = — cot(a)

Hence:
T
tan(a + E) = —cot(a)

This transformation is done to remove an angle sum from being used in the system of equations
and to better present the value of the slope of the tangent line in relation to the angle it makes
with the y-axis as shown in figure 8. Using the cotangent function allows to clearly see that the

slope is negative.

Knowing this and the y-intercept of the tangent line of the curve we can derive the equation of
a line that describes this situation. By substitution of F' as a value of x seen in figure 8 we get a

equation of a zero of that line:
0=—cot(a)F+2+m

Now we must consider two triangles: LNU and LWS seen in figure 9. These two triangles are

similar by the principle that all of them create the same angles on the inside.

We can use these triangles to obtain a ratio containing F. By using similarity of triangles

principle of triangle LNU and LWS we obtain:

m+2-y m+2
2 - F

17
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Figure 9.: Ellipse case with vertices of similar triangles
All these equations lead to a final system of equations which when solved will yield a function

ofmtoF.

((m+2—-y m+2

X -~ F

X

{ 2V4 —x?

0=—-cot(@) F+m+2
VI—T 42

\ YET

= —cot(a)

Now we substitute the fourth equation into the first and the second to the third yielding:

Vi = %2
!"’H‘Z_ Vi _m+2
F
| x
k() F+m+2

Now we can simplify further to obtain a equation of F in terms of x:
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2x(m + 2) _r
{2m+4—\/4—x2

X
————F=m+2
2V4 — x?

After substitution we get a equation relating F to x.

2x (—#WF)

F=2<—2—4x__sz)—m

x%F
V4 — x?
_xF +4—x?

V4 — x2

F =

2x% —4
F =
X

To create a relation between F and the height of the light m we must use one more equation
relating the line function with the slope given as a derivative equated to the equation of an

ellipse that relates y to x.

V4 —x? +2 x? 42
= m
2 2v4 — x2
After solving for m we obtain:
2—x%—+V4—x?

m =

Vi—x?

Now we need to expand this equation and get x in terms of m:

m(\/4—x2)+\/4—x2 =2 —x?

Now factorizing out the common term and squaring both sides to remove the square root we

obtain:
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(\/m)2 (m+1)2 = (2 — x2)?

x*—4x?+ 4 =4m? + 8m + 4 — m?x? — 2mx? — x?
After further simplification we obtain a quadratic with a parameter:
—t?2—t(m*+2m—-3)+4m? +8m =20
Where:
2

t=x

After solving this equation we should obtain 4 solutions of which only two positive should be
considered as the two negative ones are not in the domain because we are working on distances.

The discriminant of this quadratic is equal to:

JA=Vm* +4m3 + 14m2 + 20m + 9

These operations yield us two zeros of the quadratic with a parameter which are:

. —m? -2m+3+Vvm*+4m3 +14m2 +20m+9
L=
2

—m?-2m+3—vVvm*+4m3 +14m2 +20m+9
2

t2:

Now using these zeros and imputing them into the original condition of:

t =x?

We get 4 zeros of the original function:

_V=2m? — 4m + 6 + 2Vm* + 4m® + 14m? + 20m + 9
B 2

X1

V=2m? —4m+ 6+ 2Vm* + 4m3 + 14m2 + 20m + 9
2

x2=
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_V=2m? —4m + 6 — 2Vm* + 4m3 + 14m? + 20m + 9
- 2

X3

V=2m? —4m+ 6 —2Vm* + 4m3 + 14m? + 20m + 9
2

Xyg4 =
The negative solutions are not in the domain hence they are disregarded in the next steps as

well as x; which yields complex solutions. Now we substitute x; into:

2x% —4
F =
X

2
2<\/—2m2—4m+6+2\/m4+4m3+14m2+20m+9> 4

2

F =

V=2m? —4m+ 6+ 2Vm* + 4m3 + 14m? + 20m + 9
2

Final determination of the function relating the area of the shadow to the value of m
Using the formula for the area of the ellipse:
Aeniipse = mab

We can now obtain the function however we must take absolute value of both D and F' as they
are both distances in this case and cannot be negative. Substituting both D and F into the

formula we obtain:

Aellipse = |nDF]|

2
2(\/—2m2—4m+6+2\/m4+4m3+14m2+20m+9> _4

2

2+m)m+1|
Acttipse = |T* . 2
V=2m? — 4m + 6 + 2v/m* + 4m3 + 14mZ + 20m + 9 (m+1)y@m+1)*-1

2

We can now graph the function using the GeoGebra online graphical calculator

(https://www.geogebra.org/graphing?lang=pl):
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Figure 10.: Graph of the function f(m) = Aciipse

Analysis and interpretation of results

The function graphs the relationship between the height m and the area of the shadow created
by the light rays. The logical geometric interpretation of the problem suggests that with m
approaching infinity the area of the shadow would converge to the area of the original ellipse
used to obtain the prolate spheroid. We can check if this is true by calculating the limit of this

function to find if it converges on the value of the area of the original ellipse:
The area of the original ellipse:
Actiipse =T 21
Aenipse = 6,28 (3s.1.)

The degree of the rounding is given to 3 significant figures again as per convention.

2
2(\/—Zmz—4m+6+2\/m4+4m3+14m2+20m+9> B

2

i 2+m)m+1|
m |- '
morteo V=2m? —4m + 6 + 2Vm* + 4m3 + 14m® + 20m + 9 (m+1)y(m+1)* -1

2
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lim nDF =27

m-+oo

lim nDF = 6,28 (3s.f.)

m-—+oo

By performing these operations we prove that the limit of the function is equal to the expected
value of the area. This fits the logical interpretation and the limit can be graphed as horizontal

asymptote of this function:
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Figure 11.: Graph of f(m) and it’s limit shown as horizontal asymptote

We can clearly see the asymptotic behavior of the function as m approaches infinity. The
function also exhibits asymptotic behavior when m is nearing zero. This can be explained by
the area being infinitely large when m is zero because the tangent line would be parallel to the

X-axis.
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3. Summary

3.1 Conclusions

The aim of my investigation has been to determine the function of m that describes the
relationship between m and the area of an elliptical shadow to model a theoretical representation
of a real-life situation where a rugby ball casts a shadow when placed under a lamp. The

exploration was successful in determining the function. The function is given by:

2
| 2<\/—2m2—4m+6+2\/m4+4m3+14m2+20m+9> _

fom) = |- 2 . 2+m)m+1|
V=2m? —4m + 6 + 2Vm* + 4m> + 14m2 + 20m + 9 (m+1)y(m+1)2-1

2

The logical geometric interpretation of the problem fits the calculated values of the limit of the
function. The behavior of the function meets expectations for such a problem and doesn’t

present any anomalies.

Determining the lengths of the semi-minor axis of shadow using the trigonometric approach
proved to be easier than using Calculus. It would be unreasonably difficult to try and solve the
circle case (figure 7) using Calculus as the trigonometric approach is way easier. However, in
the case of the semi-major axis, it is very difficult and complicated to solve this elliptical case
using only trigonometry. Using properties of curves, and their tangents by their interpretation
in Calculus in conjunction with trigonometry is way easier to solve this case. This difficulty of
solving using only trigonometry is due to the nature of the derivative of the equation describing
an ellipse which is not linear compared with the linear derivative of an equation describing the

circle.
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3.2 Extensions

Possible extensions of this work could include manipulating the position of the light and
changing the spheroid into an oblate spheroid which is a similar spheroid however it is created
by rotation about the semi-minor axis of the ellipse. The function could also be used to
determine the answers to questions like: For what m is the shadow twice bigger than the original
ellipse? Another extension could be an attempt at the generalization of this problem for all

values of @ and b within a reasonable domain such that when substituted it creates an ellipse.

3.3 Evaluation

3.3.1 Strengths

A strength of the exploration is a lack of any approximations in terms of the projections of the
light rays. All values used to obtain the function are exact and provide a clear template for how
to solve such problems with differing values of @ and 5. Another definite strength is the solution
to the ellipse case. It provides a template to create functions that plot zeros of derivatives

interpreted as tangent lines to a curve dependent on the variable y-intercept of the tangent line.

3.3.2 Limitations and Improvements

One limitation concerning the exploration is the use of defined values of a and b as the semi-
major and semi-minor axes. Due to this it would be difficult to generalize this function to all
values of a and b within a reasonable domain. This could be addressed by following the same
steps as the exploration did however without defining an exact numerical value of @ and b and
rather including a range of possible values of a and b for which an ellipse is created. Another
limitation of this exploration is that it is rather theoretical and uses values for a and b which are
unreasonable for real-world dimensions of a rugby ball making this exploration purely
theoretical and with limited direct applications to the real-world. This could be simply

addressed by taking accurate measurements of the dimensions of a rugby ball and using them
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in the calculations. One more limitation is the nature of the position of the spheroid. In the
exploration, it is assumed that the longer semi-major axis is parallel to the x-axis. The function
derived does not consider a situation where the semi-major axis would lie on the y-axis as this
would yield a completely different shadow. This could be addressed by solving such a case

consisting only of one elliptical case and yielding a function describing the circular shadow.
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