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Introduction and background information to the cryptosystem  

The study of cryptography has evolved from simple ciphers into more reliable 

techniques of conveying information. Contemporary cryptography is crucial as it is 

used to protect confidential information. Public-key cryptography refers to systems 

which use a public key and a private key to exchange messages                             

(Hellman 1978, 25–26). The public key can be displayed publicly, while the private key 

remains secret. It works in a way that anyone can encrypt a message using the public 

key, creating ciphertext, but only the possessor of the private key can decrypt it and 

obtain the message sent.   

 

An early example of public-key cryptography is the Merkle-Hellman cryptosystem 

invented in 1978 by Ralph Merkle and Martin Hellman (Liu et al. 2019, 1). It is based 

on a special case of the subset sum problem. The cryptosystem was broken in 1981 

and was since considered insecure. One of the methods which can be used to attack 

it is lattice reduction, which almost always yields the original message, without 

acquiring the private key used for decryption.   

 

The paper will examine the use of the Lenstra–Lenstra–Lovász lattice reduction 

algorithm, known as the LLL algorithm, in attacking the Merkle-Hellman cryptosystem. 

The usage of the LLL algorithm on the Merkle-Hellman cryptosystem will be analyzed 

by encrypting and decrypting a chosen message. 
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Subset sum problem  

The Merkle-Hellman cryptosystem bases on the subset sum problem which is defined 

below (Stamp and Low, 2007):   

 

Given a sequence 𝑊 of 𝑟 weights,   

𝑊 =  (𝑤0 , 𝑤1, . . . , 𝑤𝑟−1) 

where 𝑟 ∈ ℤ+ ∪ {0} and 𝑤𝑖 ∈ ℤ+ and a sum 𝑆, 𝑆 ∈ ℤ+,  

find a bit sequence 𝑥 =  (𝑥0, 𝑥1, . . . , 𝑥𝑟−1),  where 𝑥i ∈ {0,1}, meaning 𝑥i is a binary 

number, and  𝑖 ∈ {0, 1, . . . , 𝑟 − 1}., so that  

S = ∑𝑥𝑖𝑤𝑖

𝑟−1

𝑖=0

 

For the purpose of illustration suppose the weights are 𝑊 = (4, 8 ,3, 1, 23, 40), 𝑟 = 6 

and the given sum is 𝑆 = 34. Then, a solution to the subset sum problem is given by  

a unique bit sequence 𝑥 = (011010), since   

0 ∙  4 +  1 ∙  8 +  1 ∙  3 +  0 ∙  1 +  1 ∙  23 +  0 ∙  40 =  34  

The solution is unique in this case because there does not exist another way to obtain 

the sum 𝑆, when 𝑥i ∈ {0,1}. This can be checked by comparing 𝑥𝑖 with the sum 𝑆, as 

presented further. 

40  cannot be a part of the solution because it exceeds the sum 34 , hence the bit 

corresponding to it is 0. 23 must be used to reach the sum because the sum of all the 

other numbers is 4 + 8 + 3 + 1 < 34. The sum that must be reached with the usage of 

{4, 8, 3, 1} is 34 − 23 = 11, which is only possible by adding 8 + 3 = 11. Therefore, the 
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bits corresponding to 8  and 3  are 1 s and the bits corresponding to 4  and 1  are 0 s. 

Thus, it is ensured that 𝑥 = (011010) is the only solution. 

Nevertheless, there exist examples of the subset sum problem that have more than 

one solution, therefore the bit sequence 𝑥 is not always unique. Suppose 𝑊 has not 

changed and the given sum is now 𝑆 =  35. Then the possible solutions are   

𝑥 = (011110) , since  

0 ∙ 4 + 1 ∙ 8 + 1 ∙ 3 + 1 ∙ 1 + 1 ∙ 23 + 0 ∙ 40 = 35  

or 𝑥 = (110010), since  

1 ∙ 4 + 1 ∙ 8 + 0 ∙ 3 + 0 ∙ 1 + 1 ∙ 23 + 0 ∙ 40 = 35  

The case is that when different weights 𝑤𝑖  can be summed to obtain the same result, 

there will be more than one solution. The subset sum problem has no solution if it is 

impossible to obtain the sum 𝑆 for the given set of weights. Let us take the previous 

𝑊 = (4, 8, 3, 1, 23, 40) and a new sum  𝑆 = 10. In this case, there does not exist a way 

to obtain the solution. Another example with no solution, using the unchanged 𝑊, 

occurs when the sum 𝑆 = 6. 

A type of the subset sum problem is a superincreasing knapsack. A superincreasing 

knapsack is a sequence of 𝑟 weights ordered from the least to the greatest, where 

each next weight is greater than the sum of all the previous weights 

𝑊𝑛 > ∑ 𝑊𝑖

𝑛−1

𝑖=0

 

for all 𝑛 ∈ {2,3,… , 𝑟 − 1} (Stamp and Low 2007, 267-268). For example,  
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𝑊 =  (2, 5, 18, 26, 54, 106, 219, 447)  

is a superincreasing knapsack.  

 

To find the sequence 𝑥, that is the solution to the knapsack, it will be checked which 

values are needed to obtain the sum 𝑆. Suppose the given sum is 𝑆 = 374. Since            

𝑆 <  447, it can be concluded that 𝑥7 = 0 . Next,   

2 + 5 + 18 + 26 + 54 + 106 = 211  

which is less than 219, so 𝑥6 = 1, because it would be impossible to obtain 𝑆 without 

𝑥5, due to the sum off all remaining values being less than 219. Then,   

2 + 5 + 18 + 54 = 79  

and  

79 + 219 < 374  

 so it must be the case that 𝑥4 = 1. Otherwise, the sum 𝑆 could not be reached.  

Now let   

𝑆1 = 𝑆 − (219 + 106) = 49  

 considering that   

26 < 𝑆1 < 54 and 𝑥4 = 0 and 𝑥3 = 1  

 Continuing this process,   

2 + 5 + 26 + 106 + 219 < 374  
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so 𝑥2 = 1. Currently, having obtained 𝑥𝑖, 𝑖 ∈ {2,3,…,7} the sum is equal to 369, so the 

only possible case is that 𝑥1 = 1 and 𝑥0 = 0 in order to solve this superincreasing 

knapsack, hence,   

𝑥 = (01110110)  

 To verify the answer:  

0 ∙ 2 + 1 ∙ 5 + 1 ∙ 18 + 1 ∙ 26 + 0 ∙ 54 + 1 ∙ 106 + 1 ∙ 219 + 0 ∙ 447 = 374 = 𝑆  

therefore, the obtained answer 𝑥 = (01110110) is true. This algorithm can be used to 

solve any superincreasing knapsack. Additionally, because of its superincreasing 

property there always exists at most one solution, because once you reach the target 

sum, no subsequent weights can be added, because they will exceed the sum. 

 

The Merkle-Hellman knapsack cryptosystem  

The idea behind the Merkle-Hellman cryptosystem is creating a public and private key. 

The private key has a form of a superincreasing sequence, a modulo and a factor. The 

superincreasing sequence is transformed into the public key. After a message is sent 

to the receiver, the receiver uses his private key to reverse the encryption process and 

is able to solve the original superincreasing sequence to obtain the message. 

 

The cryptosystem operates based on a superincreasing knapsack, which is                      

a sequence of numbers used to encode and decode information, however, as 

presented earlier, obtaining a solution to one is relatively straightforward. To disguise 

the knapsack, in other words, make the private key unidentifiable for a person from the 

outside, Merkle and Hellman’s idea was to mathematically transform it using a modulo 
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and factor (Stamp and Low 2007, 268). This way, the newly obtained knapsack 𝑇 will 

not be superincreasing, because of the usage of a modulo, and hence, it will be 

impossible to solve it in that same, simple way. For the purpose of this paper let us 

take Alexander and Benjamin as the sender and recipient of a message, respectively. 

As the Merkle-Hellman cryptosystem is a public-key cryptosystem, the disguised 

knapsack 𝑇 is Benjamin’s public-key, and it is made public. Benjamin then receives 

ciphertext from Alexander and applies the inverse of the transformation to obtain            

a superincreasing case and then solves the knapsack, by finding the combination of 

numbers in the knapsacks that add up to the ciphertext values. 

Encryption of a message   

In this section an example of message encryption will occur. The first step is to choose 

a superincreasing knapsack 𝐾, which will enable Benjamin to create his public key and 

private key. Additionally, Benjamin chooses a modulo 𝑚, which is the remainder of a 

division, and factor 𝑓, satisfying the conditions that: 𝑔𝑐𝑑(𝑚, 𝑓) = 1, or in other words 𝑚 

and 𝑓 are coprime, and 𝑚 is greater than the sum of all the elements of 𝐾 (Stamp and 

Low 2007, 268). This ensures that the public key will consist of greater and more varied 

numbers, making the encoded message more secure. A smaller 𝑚 would result in a 

public key consisting of smaller numbers because there would be fewer possible 

remainders, which would make the message vulnerable.  

Suppose the knapsack chosen to create the private and public keys is 

 𝐾 = (3, 5, 24, 33, 66, 135, 267, 546) and 𝑚 = 1081 and 𝑓 = 19. The conditions are met 

as   
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𝑚 > 3 + 5 + 24 + 33 + 66 + 135 + 267 + 546 = 1079  

𝑚 is chosen as 1081, and not 1080 because 1080 has more factors, hence it 

would be more difficult to find a factor 𝑓, with 𝑔𝑐𝑑(𝑚, 𝑓) = 1. The set of factors of 

1081 is {1, 23, 47, 1081} and 𝑓 is a prime number, so 𝑚 and 𝑓 are coprime. To 

convert the private key 𝐾 into the public key 𝑇, Benjamin computes 𝑇 as follows:  

𝑇 = (𝑡0, 𝑡1, . . . , 𝑡𝑟−1) =  (𝑘0𝑓(𝑚𝑜𝑑 𝑚), 𝑘1𝑓(𝑚𝑜𝑑 𝑚), … , 𝑘𝑟−1𝑓(𝑚𝑜𝑑 𝑚))  

where 𝑘i is the 𝑖th element of 𝐾, 𝑖 ∈ {0,1, . . . , 𝑟 − 1}. 

Benjamin’s private key is now: 𝐾 and the modular inverse: 𝑓−1(mod 𝑚), which will be 

used to reverse the encryption process. The modular inverse is obtained below using 

the extended Euclidean algorithm (Extended Euclidean Algorithm Calculator): 

1081 = 19 ∙ 56 + 17 

19 = 17 ∙ 1 + 2 

17 = 2 ∙ 8 + 1 

1 = 17 ∙ 1 − 2 ∙ 8 

1 = 17 ∙ 1 − (19 − 17 ∙ 1) ∙ 8 

1 = 17 ∙ 1 − 19 ∙ 8 + 17 ∙ 8 

1 = 17 ∙ 9 − 19 ∙ 8 
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1 = (1081 − 19 ∙ 56) ∙ 9 − 19 ∙ 8 

1 = 1081 ∙ 9 − 19 ∙ 9 ∙ 56 − 19 ∙ 8 

1 = 1081 ∙ 9 − 19 ∙ (9 ∙ 56 + 8) 

1 = 1081 ∙ 9 − 19 ∙ 512 

−512(mod 1081) = 569 

hence 

19−1 = 569(𝑚𝑜𝑑 1081) 

𝑇 is calculated below, by the formula provided earlier:   

𝑡0 = 𝑘0𝑓(mod 𝑚) = (3 ∙ 19)(mod 1081) = 57(mod 1081) = 57  

𝑡1 = 𝑘1𝑓(mod 𝑚) = (5 ∙ 19)(mod 1081) = 95(mod 1081) = 95  

𝑡2 = 𝑘2𝑓(mod 𝑚) = (24 ∙ 19)(mod 1081) = 456(mod 1081) = 456  

𝑡3 = 𝑘3𝑓(mod 𝑚) = (33 ∙ 19)(mod 1081) = 627(mod 1081) = 627  

𝑡4 = 𝑘4𝑓(mod 𝑚) = (66 ∙ 19)(mod 1081) = 1254(mod 1081) = 173  

𝑡5 = 𝑘5𝑓(mod 𝑚) = (135 ∙ 19)(mod 1081) = 2565(mod 1081) = 403  
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𝑡6 = 𝑘6𝑓(mod 𝑚) = (267 ∙ 19)(mod 1081) = 5073(mod 1081) = 749  

𝑡7 = 𝑘7𝑓(mod 𝑚) = (546 ∙ 19)(mod 1081) = 10374(mod 1081) = 645  

Hence, the public key is  

𝑇 = (57, 95, 456, 627, 173, 403, 749, 645)  

It is worth noticing that 𝑡0, 𝑡1, 𝑡2, 𝑡3 are each equal to 𝑘𝑖𝑓. This occurs because in these 

four cases  𝑘𝑖𝑓 <  𝑚 . We can derive that the greater the modulo, the smaller the 

number of public key elements which need an additional step of computing may be.  

Therefore, the greater the modulo, the less secure may the cryptosystem be. And, 

inversely, the smaller the modulo, the more elements need an additional step of 

computing, and it may be more difficult for an attacker to infer the private key. Due to 

the fact that an additional operation is needed to obtain the public key, it is more difficult 

for a potential attacker to understand in what way the private key values were picked.  

 

Benjamin’s private key is  

𝐾 = (3, 5, 24, 33, 66, 135, 267, 546)  

and   

𝑓−1(mod 𝑚) = 𝑓−1(mod 1081) = 569  
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Suppose, Alexander wants to encrypt the message 𝑀 = 𝑑𝑜𝑔. 𝑀 must be converted to 

binary but each of the letters takes up 8 bits, so in total there will be 24 bits, while the 

public key allows only 8-bit structures, since it consists of an eight-element sequence, 

as 𝑟 = 8. To solve this problem each letter will be encrypted separately as follows:  

𝑀1 = 𝑑, 𝑀2 = 𝑜, 𝑀3 = 𝑔. 𝑀1 = 01100100, 𝑀2 = 01101111, 𝑀3 = 01100111, according to 

the binary representations table present in the Appendix (Figure 1). When using the 

binary notation of letters in ASCII the first bit is always 0 because the letters consist of 

7 bits.  When Benjamin receives the message, he will have to decrypt each letter 

separately, which is a limitation that is analyzed further on in this paper. 

 

To compute the ciphertext 𝐶 Alexander sums each element of 𝑇 multiplied by the 

corresponding bits of 𝑀, as follows:  

𝐶1 = 0 ∙ 57 + 1 ∙ 95 + 1 ∙ 456 + 0 ∙ 627 + 0 ∙ 173 + 1 ∙ 403 + 0 ∙ 749 + 0 ∙ 645 = 954   

𝐶2 = 0 ∙ 57 + 1 ∙ 95 + 1 ∙ 456 + 0 ∙ 627 + 1 ∙ 173 + 1 ∙ 403 + 1 ∙ 749 + 1 ∙ 645 = 2521   

𝐶3 = 0 ∙ 57 + 1 ∙ 95 + 1 ∙ 456 + 0 ∙ 627 + 0 ∙ 173 + 1 ∙ 403 + 1 ∙ 749 + 1 ∙ 645 = 2348   

This process relates to the subset sum problem because specific elements are 

selected to form a sum, which is the ciphertext. These three parts of ciphertext when 

put together form the message. The message is secure because someone from the 

outside, that obtained the ciphertext cannot simply match it to a letter represented in 

binary. 
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Decryption of a message  

The computed ciphertext 𝐶 is sent to Benjamin and he reverses the encryption process 

using his private key, by operating on the received ciphertext and by using the modular 

inverse.  

𝐶1𝑓−1(mod 𝑚) = (954 ∙ 569)(mod 1081) = 164  

𝐶2𝑓−1(mod 𝑚) = (2521 ∙ 569)(mod 1081) = 1043  

𝐶3𝑓−1(mod 𝑚) = (2348 ∙ 569)(mod 1081) = 977  

Due to these computations, Benjamin is able to reverse the encryption, by using the 

modular inverse 𝑓−1.  

Benjamin’s next step is to solve the superincreasing knapsack 𝐾 for each of the 

obtained numbers: 164, 1041, and 977. When solving the superincreasing knapsack 

K, if a number 𝑘𝑖  is needed to obtain the sum, the bit corresponding to it is 1, otherwise 

the bit corresponding to it is 0. Below, the superincreasing knapsack   

𝐾 = (3, 5, 24, 33, 66, 135, 267, 546)  

is solved for 977 and the message 𝐷3 is uncovered in binary in detail, with reference 

to solving the subset sum problem in a superincreasing case. The order of decrypting 

the parts of the message does not matter, because they are not dependent on each 
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other. To visualize uncovering the message in binary step by step, 𝐷3 is represented 

in the following way: 

𝐷3  =  (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5𝑦6𝑦7̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

where 𝑦𝑖 ∈ {0, 1} and 𝑦𝑖 means that 𝑦𝑖 is the 𝑖𝑡ℎ digit of an r-digit number 𝐷3, 

𝑖 ∈ {0,1, . . . , 𝑟 − 1} , where each 𝑦𝑖  will be exchanged with 0  or 1 . First, it is 

checked whether it is possible to obtain 977  without 546 , this is done by 

adding all the values except 546;  

3 + 5 + 24 + 33 + 66 + 135 + 267 = 533  

and 533 < 977, hence the bit corresponding to 546 is 1.   

𝐷3 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5𝑦61̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  

The same process is repeated with the next number.   

3 + 5 + 24 + 33 + 66 + 135 + 546 = 812  

 which means that 267 is needed and the bit corresponding to it is also 1.   

𝐷3 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦511̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  

Next, summed up are all the values except 135;   
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3 + 5 + 24 + 33 + 66 + 267 + 546 = 944  

so 135 is needed, so the corresponding bit is 1.  

𝐷3 = (𝑦0𝑦1𝑦2𝑦3𝑦4111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  

Next, all values are summed up except for 66;   

3 + 5 + 24 + 33 + 135 + 267 + 546 = 1013, and 1013 > 977 

 hence the bit corresponding to 66 is 0. 

   

𝐷3 = (𝑦0𝑦1𝑦2𝑦30111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  

Next, all the values except 33 and 66, which was concluded to be unnecessary, are  

summed; 

3 + 5 + 24 + 135 + 267 + 546 = 980 and 980 > 977 

therefore, the bit corresponding to 33 is 0.   

𝐷3 = (𝑦0𝑦1𝑦200111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  

For 24;   
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3 + 5 + 135 + 267 + 546 = 956  

hence the bit corresponding to 24 is 1.   

𝐷3 = (𝑦0𝑦1100111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  

Now, 3 and 5 are left, so it can be concluded that to reach the desired sum, the bit 

corresponding to 5 is 1 and the bit corresponding to 3 is 0. This can be checked by 

adding all the values that correspond with 1 bits:   

5 + 24 + 135 + 267 + 546 = 977  

and  

𝐷3 = (01100111)  

Therefore, 𝐷3 = (01100111) and its binary notation corresponds to the character g, as 

presented in the Binary Representations Table (see Appendix). Below 𝐷1 and 𝐷2 are 

solved using the same principles: 

To obtain D1 the knapsack 𝐾 = (3, 5, 24, 33, 66, 135, 267, 546) is solved for 164. Since,  

546 > 164 and 267 > 164  

The last two elements of the sequence are 0s, 𝐷1 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦500̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). Next, 
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3 + 5 + 24 + 33 + 66 = 131, hence 𝐷1 = (𝑦0𝑦1𝑦2𝑦3𝑦4100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  

Then, 

3 + 5 + 24 + 33 + 135 = 200 and 𝐷1 = (𝑦0𝑦1𝑦2𝑦30100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  

Similarly,  

3 + 5 + 24 + 135 = 167, therefore 𝐷1 = (𝑦0𝑦1𝑦200100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  

and 

3 + 5 + 135 = 143, hence 𝐷1 = (𝑦0𝑦1100100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  

and 

3 + 24 + 135 = 162, therefore 𝐷1 = (𝑦01100100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  

Now it is visible, that   

5 + 24 + 135 = 164, therefore 𝐷1 = (01100100)  

The obtained 8-bit structure is 𝐷1 = 𝑑, using the Binary Representations Table 

 (Figure 1) . 
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Below the knapsack 𝐾 = (3, 5, 24, 33, 66, 135, 267, 546) is solved for 1043. Let us start 

with 𝐷2 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5𝑦6𝑦7̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ),  

3 + 5 + 24 + 33 + 66 + 135 + 267 = 533  

hence 546 is needed, and  

𝐷2 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5𝑦61̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  

Then using the same principles:  

3 + 5 + 24 + 33 + 66 + 135 + 546 = 812, hence 𝐷2 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦511̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  

and   

3 + 5 + 24 + 33 + 66 + 267 + 546 = 944, therefore 𝐷2 = (𝑦0𝑦1𝑦2𝑦3𝑦4111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  

and  

3 + 5 + 24 + 33 + 135 + 267 + 546 = 1013, hence 𝐷2 = (𝑦0𝑦1𝑦2𝑦31111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  

Next,  

3 + 5 + 24 + 66 + 135 + 267 + 546 = 1046, hence 𝐷2 = (𝑦0𝑦1𝑦201111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  
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and 

3 + 5 + 66 + 135 + 267 + 546 = 1022, therefore, 𝐷2 = (𝑦0𝑦1101111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  

The numbers left are 3 and 5 and it can be observed that   

1038 + 5 = 1043, therefore, 𝐷2 = (01101111)  

Alexander finds that 𝐷1 = 𝑑, using the Binary Representations Table.  

Taken together, he has uncovered three letters: d, o, g. After combining them into one 

message, 𝐷 = 𝑑𝑜𝑔 it can be observed that it is the same message that was sent by 

Alexander, 𝑀 = 𝑑𝑜𝑔. This outcome confirms that the process of encryption and 

decryption was successful. Encryption and decryption of a short word is easier than 

when dealing with multiple bit sequence cases, but it can show how the operations are 

carried out and can demonstrate the Merkle-Hellman cryptosystem’s effectiveness in 

conveying information. 

The upcoming sections of this paper combine knowledge of public-key cryptography 

and linear algebra to perform an attack on the Merkle-Hellman cryptosystem.  

Defining lattices  

To understand the lattice reduction attack, a few definitions and principles of linear 

algebra must be understood. In this paper, vectors are denoted using the international 

standard notation 𝑣⃗ =  (
𝑣⃗𝑎

𝑣⃗𝑏
). For the purpose of this paper let us define a lattice as the 



  19  

  

set of linear combinations of linearly independent vectors {𝑣⃗1, 𝑣⃗2, …, 𝑣⃗𝑛} ∈ ℝ𝑏, where 𝑏 

is the number of directions in which the vectors can exist, where 𝑛 ≥  𝑏  with 

coefficients in ℤ (Micciancio 2013, 3),   

𝐿 = 𝑎1𝑣⃗1 + 𝑎2𝑣⃗2 + … + 𝑎𝑛𝑣⃗𝑛  

where 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℤ (Polách 2022). Linear independence is defined as follows:   

A set of vectors {𝑣⃗1, 𝑣⃗2, …, 𝑣⃗𝑛} is linearly independent if the vector equation   

𝑥1𝑣⃗1 + 𝑥2𝑣⃗2 + … + 𝑥𝑛𝑣⃗𝑛 = 0  

has only one solution, that is:  

𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 0  

(Margalit and Rabinoff 2019).   
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Figure 2: A lattice spanned by different bases (created by the author of this paper)  

Figure 2 represents an example lattice spanned, meaning generated, using linear 

combinations of the basis vectors, by the vectors 𝑠1⃗⃗  ⃗ and 𝑠2⃗⃗  ⃗. For the purpose of further 

analysis, it is important to understand that the same lattice can be spanned by different 

bases, here, represented as u1⃗⃗⃗⃗  , 𝑢2⃗⃗⃗⃗   (Louis 2023). A basis is a set of linearly 

independent vectors. 

Lattice reduction and the LLL algorithm  

Lattice reduction is a technique that can be used to find short, nearly orthogonal 

vectors. The orthogonality defect can be used to check if vectors are nearly 

orthogonal. It compares the product of the lengths of the basis vectors with the volume 
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of the parallelepiped they define (Wikipedia contributors, “Lattice Reduction” 2024). 

This means that the closer the orthogonality defect is to 1, the more orthogonal the 

basis vectors are. The LLL algorithm is a lattice reduction algorithm invented by 

Lenstra, Lenstra and Lovász in 1982. One of the subparts of the LLL is the Gram-

Schmidt Process, which is responsible for finding orthonormal vectors, meaning ones 

that are perpendicular and of the same length. The process is performed as follows 

(Taboga 2024):  

The vectors that we start with are 𝑠1⃗⃗  ⃗ and 𝑠2⃗⃗  ⃗. The vectors that are to be obtained are 

denoted as 𝑢1⃗⃗⃗⃗    and 𝑢2⃗⃗⃗⃗  . The notions used in the Gram-Schmidt Process are: the 

magnitude and the dot product of two vectors. For vectors to be orthonormal, the 

conditions below must be met: 

For each vector 𝑢1⃗⃗⃗⃗  , . . . , 𝑢𝑘⃗⃗⃗⃗  : 

 

|𝑢𝑗⃗⃗  ⃗ | = 1 for any 𝑗 and 𝑢𝑗⃗⃗  ⃗  • 𝑢𝑘⃗⃗⃗⃗  = 0 if 𝑗 ≠ 𝑘 

 

The first step is normalization, which refers to changing a vector into a unit vector:  

𝑢1⃗⃗⃗⃗ =
1

|𝑠1⃗⃗  ⃗ |
 ∙ 𝑠1⃗⃗  ⃗ 

then a vector projection 𝑠 2 is obtained by mapping the vector 𝑠2⃗⃗  ⃗  onto a line parallel to 

𝑢1⃗⃗⃗⃗  

𝑠2̂ = (𝑠2⃗⃗  ⃗ • 𝑢1⃗⃗⃗⃗ ) ∙ 𝑢1⃗⃗⃗⃗  
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next compute residual, which is the part of the vector that is not aligned with the 

direction of the projection:  

𝜀2⃗⃗  ⃗ = 𝑠2⃗⃗  ⃗ − 𝑠2̂ 

And finally, normalize:  

𝑢2⃗⃗⃗⃗ =
1

|𝜀2⃗⃗  ⃗|
∙ 𝜀2⃗⃗  ⃗ 

For the purpose of understanding how this process works an attempt of accomplishing 

it is presented below.  

 

Let us consider the vectors:  

𝑠1⃗⃗  ⃗  = (
1

−1
)  and 𝑠2⃗⃗  ⃗  = (

0

−2
) 

 

presented below in a visual form: 
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Figure 3: The vectors 𝑠1⃗⃗  ⃗ and 𝑠2⃗⃗  ⃗ presented on a plane using GeoGebra 

The Gram-Schmidt Process is presented below with reference to the theoretical 

framework explained on pages 21 and 22.  

𝑢1⃗⃗⃗⃗ =
1

| 𝑠1⃗⃗  ⃗|
∙  𝑠1⃗⃗  ⃗ =

1

√12 + (−1)2
∙ (

1

−1
) =

1

√2
∙ (

1

−1
)  =

(

 
 

√2
2

−
√2
2

)

 
 

  

and  

𝑠2̂ = (𝑠2⃗⃗  ⃗ • 𝑢1⃗⃗⃗⃗ ) ∙ 𝑢1⃗⃗⃗⃗ =

(

  
 

(
0

−2
) •

(

 
 

√2
2

−
√2
2

)

 
 

)

  
 

∙

(

 
 

√2
2

−
√2
2

)

 
 

= 
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= [0 +
2

√2
] ∙

(

 
 

√2
2

−
√2
2

)

 
 

= [√2] ∙

(

 
 

√2
2

−
√2
2

)

 
 

= (

2
2

−
2
2

) = (
1

−1
) 

and  

𝜀2⃗⃗  ⃗ = 𝑠2⃗⃗  ⃗ − 𝑠2̂ = (
0

−2
) − (

1

−1
) = (

−1

−1
) 

and  

𝑢2⃗⃗⃗⃗ =
1

|𝜀2⃗⃗  ⃗|
∙ 𝜀2⃗⃗  ⃗ =

1

√(−1)2 + (−1)2
∙ (

−1

−1
) =

1

√2
∙ (

−1

−1
) =

(

 
 −

√2
2

−
√2
2

)

 
 

 

The obtained orthogonal vectors are   

𝑢1⃗⃗⃗⃗ =

(

 
 

√2
2

−
√2
2

)

 
 

and 𝑢2⃗⃗⃗⃗ =

(

 
 −

√2
2

−
√2
2

)

 
 

 

Figure 4 presents the vectors 𝑠1⃗⃗  ⃗ , 𝑠2⃗⃗  ⃗  and the orthogonalized vectors 𝑢1⃗⃗⃗⃗  , 𝑢2⃗⃗⃗⃗   on the 

same set of axes.  
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Figure 4: The vectors 𝑠1⃗⃗  ⃗, 𝑠2⃗⃗  ⃗,𝑢1⃗⃗⃗⃗ , and 𝑢2⃗⃗⃗⃗  presented on a plane using GeoGebra 

To examine if these vectors really are orthonormal the conditions are checked: 

 

|𝑢1⃗⃗⃗⃗ | = √
√2

2
∙
√2

2
+ (−

√2

2
) ∙ (−

√2

2
) = √

1

2
+

1

2
= 1 

 

and 

|𝑢2⃗⃗⃗⃗ | = √(−
√2

2
) ∙ (−

√2

2
) + (−

√2

2
) ∙ (−

√2

2
) = √

1

2
+

1

2
= 1 

and 

𝑢1⃗⃗⃗⃗ •  𝑢2⃗⃗⃗⃗ =
√2

2
∙ (−

√2

2
) + (−

√2

2
) ∙ (−

√2

2
) = −

1

2
+

1

2
= 0 

 

Hence both conditions are satisfied, therefore 𝑢1⃗⃗⃗⃗   and 𝑢2⃗⃗⃗⃗   are orthonormal. 
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The presented process is the first step in the LLL algorithm. It is explained in the steps 

in Figure 5. 

 

 

Figure 5: The LLL algorithm (Source No. 7 in Bibliography)  

With reference to Figure 5 and the text by Hoffstein, the steps of the LLL algorithm will 

be explained. At each step, the vectors 𝑣⃗1⃗⃗⃗⃗ 
∗
, … , 𝑣⃗𝑘⃗⃗⃗⃗ 

∗
 form an orthogonal set obtained by 

applying the Gram-Schmidt process to the current values of 𝑣⃗1⃗⃗⃗⃗ , … , 𝑣⃗𝑘⃗⃗⃗⃗ , where 𝑘 is an 

index used to iterate through the basis vectors of the lattice and 𝑣⃗1⃗⃗⃗⃗ 
∗
 refers to the part 

of the orthogonalized set. The associated quantity 𝜇𝑖,𝑗  defined as 
𝑣𝑖⃗⃗  ⃗∙𝑣1⃗⃗⃗⃗  

∗

|𝑣1⃗⃗⃗⃗  
∗
|
2 , and is the 

coefficient used to perform the size reduction step in the algorithm (Hoffstein et al. 

2014, 444).  
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The first step is to input a basis for a lattice, where the vectors are assumed to be 

linearly independent. Then, the step in line [3] begins the Gram-Schmidt Process 

discussed throughout pages 21 – 24, starting from the second vector. Each current 

vector is adjusted by reducing its size as presented in line [6]. This is a part of the [Size 

Reduction] step. The [Lovász Condition] determines whether vectors are in the correct 

positions, meaning ordered by their length. This is a crucial step of the algorithm as it 

ensures that the orthogonalized vectors are short, which leads to efficiently creating a 

reduced basis. If the condition is satisfied for 𝑘, the algorithm checks whether it is 

satisfied for 𝑘 + 1, and so on. If the [Lovász Condition] is not satisfied, it indicates that 

the vectors are not in the correct order, and the [Swap Step] is performed, meaning 

that the 𝑘𝑡ℎ vector is interchanged with the (𝑘 − 1)𝑡ℎ vector. Line [12] is responsible for 

setting such a value of 𝑘, so that the algorithm steps back to check the order of the 

vectors in case there are further adjustments of the order needed. This process is 

repeated until all the [Lovász Condition] holds true for all vectors. Once it is satisfied, 

the loop ends as seen in line [14], and the LLL algorithm outputs a reduced basis for 

the lattice, which can be seen in line [15]. 

Attacking the cryptosystem   

With reference to the previously encrypted and decrypted messages using the Merkle-

Hellman cryptosystem, let us attack the cryptosystem using lattice reduction, through 

the Lenstra-Lenstra-Lovász algorithm. For the purpose of this paper, we will refer to 

the attacker as Teresa.   

Alexander sends Benjamin a ciphertext block 𝐶3 = 2348 encrypted using the public key 

𝑇 = (57, 95, 456, 627, 173, 403, 749, 645). Teresa knows this information allowing her 
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to solve the matrix equation 𝑇𝑈 = 𝐶, where 𝑈 consists only of 0s and 1s. If 𝑈 is a 

solution to 𝑇𝑈 = 𝐶, then the block matrix equation   

  

𝐽𝑉 = [
𝐼𝑟×𝑟 0𝑟×1

𝑇1×𝑟 −𝐶1×1
] [

𝑈𝑟×1

11×1
] = [

𝑈𝑟×1

01×1
] = 𝑊 

holds, since  𝐽𝑉 =  𝑊 is equivalent to 𝑈 =  𝑈 and 𝑇𝑈 −  𝐶 =  0. To ensure that a 0 is 

produced as the last entry of 𝐽𝑉, 𝐶 occurs with a negative sign in the matrix (Stamp 

2005, 203-210). 𝐽 is the block matrix combining the identity matrix  𝐼,  which helps to 

maintain the structure of a lattice and the public key 𝑇, along with the ciphertext 𝐶, sent 

by Alexander. 𝑉 is a matrix that includes 𝑈, which is the message sent by Alexander 

made of 0s and 1s and 𝑊 is the result of matrix multiplication, one of which contains 

the original message. Given that the public key is a sequence consisting of 8 elements, 

Teresa knows that 𝑟 = 8. Hence, she acquires the block matrix equation: 

 

𝐽𝑉 = [
𝐼8×8 08×1

𝑇1×8 −𝐶1×1
] [

𝑈8×1

11×1
] = [

𝑈8×1

01×1
] = 𝑊 

and is able to construct the block matrix 𝐽.  

𝐽 =

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
57 95 456 627 173 403 749 645 −2348]
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Given that Teresa is able to find a solution 𝑉 to the block matrix equation 𝐽𝑉 =  𝑊 she 

will consequently find a solution 𝑈 to the original equation 𝑇𝑈 =  𝐶, and hence obtain 

the bit structure encrypted by Alexander.   

To find a solution, Teresa executes the LLL algorithm, with reference to the theoretical 

framework presented on pages 25 and 26. The LLL algorithm presented in this paper 

is executed using the mathematical software SageMath. A limitation of this software is 

that it produces only the final output, and not the steps of the LLL algorithm. In terms 

of this paper, it means that only the theoretical framework of the LLL algorithm is 

presented, as well as the input and output of the algorithm. Such a gradual explanation 

could not fit in the 4000-word limit. By providing 𝐽 as an input, as seen in Figure 6 in 

the Appendix, the software outputs the short vectors in the lattice, represented in the 

matrix 𝐽′, as follows:   

  

𝐽′ =

[
 
 
 
 
 
 
 
 
−1 0 0 0 0 −2 −1 0 1
0 0 1 0 −2 1 0 −1 0
0 0 1 1 −1 0 0 2 −1
0 0 0 −1 0 −1 2 0 −1

−2 −2 0 1 0 0 0 −1 1
1 −1 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0 2
0 0 1 0 1 1 0 −1 −1
0 0 0 2 −1 −1 1 −1 0 ]

 
 
 
 
 
 
 
 

 

Now, Teresa has to examine which column has the right form to be a solution to the 

knapsack problem, that is; the column has to consist of 1’s and 0’s only, and the digit 

in the last row must equal 0. This is, because the public key 𝑇 is a sequence of eight 

numbers, and the obtained matrix 𝐽′ has nine rows. The only column that has the right 

form to be the solution is the third column, so Teresa denotes it:  

 𝑡1 = (01100111)  



  30  

  

Teresa obtained 𝑡1, so the final thing left is converting 𝑡1 back from binary. The two 

other attacks executed can be observed in the Appendix LLL Algorithm, and their 

outcomes are  

𝑡2 = (01101111)  

and  

𝑡3 = (01100100)  

A problem that Teresa encounters now, is that she does not possess information about 

the form of the message encrypted by Alexander. She only possesses the binary 

output and has to guess whether it is encrypted text, or for example a decimal number. 

Given these outputs Teresa has to try and recover the plaintext. Below, the way to 

uncover a decimal message is presented.  

Teresa decides to check what decimal numbers the binary sequences are equal to, 

and she obtains:  

𝑡1 =  0 ∙ 27 + 1 ∙ 26 + 1 ∙ 25 + 0 ∙ 24 + 0 ∙ 23 + 1 ∙ 22 + 1 ∙ 21 + 1 ∙ 20 = 103 

and 

𝑡2 =  0 ∙ 27 + 1 ∙ 26 + 1 ∙ 25 + 0 ∙ 24 + 1 ∙ 23 + 1 ∙ 22 + 1 ∙ 21 + 1 ∙ 20 = 111 

and 



  31  

  

𝑡3 =  0 ∙ 27 + 1 ∙ 26 + 1 ∙ 25 + 0 ∙ 24 + 0 ∙ 23 + 1 ∙ 22 + 0 ∙ 21 + 0 ∙ 20 = 100  

Teresa can suspect that the original message was a word. She converts the obtained 

decimal numbers into letters using the Binary Representations Table (see Appendix) 

and discovers the following: 

𝑡1 = 𝑔 and 𝑡2 = 𝑜 and 𝑡3 = 𝑑  

Therefore, it can be concluded that 𝑇 = 𝐷, hence Teresa successfully performed the 

attack on the Merkle-Hellman cryptosystem, using the LLL algorithm. This 

demonstrates its effectiveness in attacking the Merkle-Hellman cryptosystem.                   

A limitation of this way of decrypting a message is that it is time-consuming, due to the 

fact that each part of the message must be obtained individually, which also creates 

additional room for error. A limitation of the LLL algorithm arises from the fact that it 

may fail to produce a correct solution, because the lattice might not contain a short 

vector that corresponds to the solution. Nevertheless, broken in 1981, the Merkle-

Hellman cryptosystem was considered insecure, and could not be effectively used.  

Conclusion  

Throughout this paper the theory behind the Merkle-Hellman system and lattice 

reduction was presented. The encryption and decryption processes were carried out 

using the unique properties of superincreasing sequences and provided insight into 

them, while the lattice reduction was more focused on calculations including vectors 

and matrices. The most crucial step throughout this paper, is acknowledging the 

importance of the superincreasing properties of the private key, and the application of 
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the LLL algorithm, which can be effective, but it does not always yield a solution. This 

exposes the principles and vulnerabilities of the Merkle-Hellman cryptosystem, shown 

using an example and creates a better perception of them.  By examining the usage 

of the LLL-algorithm on the Merkle-Hellman cryptosystem, this paper demonstrates 

vulnerabilities exploited by lattice reduction techniques. 
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Appendix   

 

 Binary Representations  

 

     Figure 1: Binary Representations Table 
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LLL Algorithm  

 

 

  

Figure 6 :   LLL  Algorit hm   for  2348   



  38  

  

 

Figure 7: LLL Algorithm for 2521  
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Figure 8 :   LLL  Algorit hm   for 954   
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