
 0

The Use of a Lattice Reduction Algorithm on

the Merkle-Hellman cryptosystem’s security

Olga Kucharska

VIII Prywatne Akademickie Liceum Ogólnokształcące w Krakowie

Opiekun pracy: mgr Alicja Rozpędzka

 1

Table of Contents

Introduction and background information to the cryptosystem 2

Subset sum problem .. 3

The Merkle-Hellman knapsack cryptosystem ... 6

Encryption of a message ... 7

Decryption of a message ... 12

Defining lattices ... 18

Lattice reduction and the LLL algorithm .. 20

Attacking the cryptosystem .. 27

Conclusion ... 31

Bibliography ... 33

Appendix .. 36

Binary Representations ... 36

LLL Algorithm ... 37

 2

Introduction and background information to the cryptosystem

The study of cryptography has evolved from simple ciphers into more reliable

techniques of conveying information. Contemporary cryptography is crucial as it is

used to protect confidential information. Public-key cryptography refers to systems

which use a public key and a private key to exchange messages

(Hellman 1978, 25–26). The public key can be displayed publicly, while the private key

remains secret. It works in a way that anyone can encrypt a message using the public

key, creating ciphertext, but only the possessor of the private key can decrypt it and

obtain the message sent.

An early example of public-key cryptography is the Merkle-Hellman cryptosystem

invented in 1978 by Ralph Merkle and Martin Hellman (Liu et al. 2019, 1). It is based

on a special case of the subset sum problem. The cryptosystem was broken in 1981

and was since considered insecure. One of the methods which can be used to attack

it is lattice reduction, which almost always yields the original message, without

acquiring the private key used for decryption.

The paper will examine the use of the Lenstra–Lenstra–Lovász lattice reduction

algorithm, known as the LLL algorithm, in attacking the Merkle-Hellman cryptosystem.

The usage of the LLL algorithm on the Merkle-Hellman cryptosystem will be analyzed

by encrypting and decrypting a chosen message.

 3

Subset sum problem

The Merkle-Hellman cryptosystem bases on the subset sum problem which is defined

below (Stamp and Low, 2007):

Given a sequence 𝑊 of 𝑟 weights,

𝑊 = (𝑤0 , 𝑤1, . . . , 𝑤𝑟−1)

where 𝑟 ∈ ℤ+ ∪ {0} and 𝑤𝑖 ∈ ℤ+ and a sum 𝑆, 𝑆 ∈ ℤ+,

find a bit sequence 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑟−1), where 𝑥i ∈ {0,1}, meaning 𝑥i is a binary

number, and 𝑖 ∈ {0, 1, . . . , 𝑟 − 1}., so that

S = ∑𝑥𝑖𝑤𝑖

𝑟−1

𝑖=0

For the purpose of illustration suppose the weights are 𝑊 = (4, 8 ,3, 1, 23, 40), 𝑟 = 6

and the given sum is 𝑆 = 34. Then, a solution to the subset sum problem is given by

a unique bit sequence 𝑥 = (011010), since

0 ∙ 4 + 1 ∙ 8 + 1 ∙ 3 + 0 ∙ 1 + 1 ∙ 23 + 0 ∙ 40 = 34

The solution is unique in this case because there does not exist another way to obtain

the sum 𝑆, when 𝑥i ∈ {0,1}. This can be checked by comparing 𝑥𝑖 with the sum 𝑆, as

presented further.

40 cannot be a part of the solution because it exceeds the sum 34 , hence the bit

corresponding to it is 0. 23 must be used to reach the sum because the sum of all the

other numbers is 4 + 8 + 3 + 1 < 34. The sum that must be reached with the usage of

{4, 8, 3, 1} is 34 − 23 = 11, which is only possible by adding 8 + 3 = 11. Therefore, the

 4

bits corresponding to 8 and 3 are 1 s and the bits corresponding to 4 and 1 are 0 s.

Thus, it is ensured that 𝑥 = (011010) is the only solution.

Nevertheless, there exist examples of the subset sum problem that have more than

one solution, therefore the bit sequence 𝑥 is not always unique. Suppose 𝑊 has not

changed and the given sum is now 𝑆 = 35. Then the possible solutions are

𝑥 = (011110) , since

0 ∙ 4 + 1 ∙ 8 + 1 ∙ 3 + 1 ∙ 1 + 1 ∙ 23 + 0 ∙ 40 = 35

or 𝑥 = (110010), since

1 ∙ 4 + 1 ∙ 8 + 0 ∙ 3 + 0 ∙ 1 + 1 ∙ 23 + 0 ∙ 40 = 35

The case is that when different weights 𝑤𝑖 can be summed to obtain the same result,

there will be more than one solution. The subset sum problem has no solution if it is

impossible to obtain the sum 𝑆 for the given set of weights. Let us take the previous

𝑊 = (4, 8, 3, 1, 23, 40) and a new sum 𝑆 = 10. In this case, there does not exist a way

to obtain the solution. Another example with no solution, using the unchanged 𝑊,

occurs when the sum 𝑆 = 6.

A type of the subset sum problem is a superincreasing knapsack. A superincreasing

knapsack is a sequence of 𝑟 weights ordered from the least to the greatest, where

each next weight is greater than the sum of all the previous weights

𝑊𝑛 > ∑ 𝑊𝑖

𝑛−1

𝑖=0

for all 𝑛 ∈ {2,3,… , 𝑟 − 1} (Stamp and Low 2007, 267-268). For example,

 5

𝑊 = (2, 5, 18, 26, 54, 106, 219, 447)

is a superincreasing knapsack.

To find the sequence 𝑥, that is the solution to the knapsack, it will be checked which

values are needed to obtain the sum 𝑆. Suppose the given sum is 𝑆 = 374. Since

𝑆 < 447, it can be concluded that 𝑥7 = 0 . Next,

2 + 5 + 18 + 26 + 54 + 106 = 211

which is less than 219, so 𝑥6 = 1, because it would be impossible to obtain 𝑆 without

𝑥5, due to the sum off all remaining values being less than 219. Then,

2 + 5 + 18 + 54 = 79

and

79 + 219 < 374

 so it must be the case that 𝑥4 = 1. Otherwise, the sum 𝑆 could not be reached.

Now let

𝑆1 = 𝑆 − (219 + 106) = 49

 considering that

26 < 𝑆1 < 54 and 𝑥4 = 0 and 𝑥3 = 1

 Continuing this process,

2 + 5 + 26 + 106 + 219 < 374

 6

so 𝑥2 = 1. Currently, having obtained 𝑥𝑖, 𝑖 ∈ {2,3,…,7} the sum is equal to 369, so the

only possible case is that 𝑥1 = 1 and 𝑥0 = 0 in order to solve this superincreasing

knapsack, hence,

𝑥 = (01110110)

 To verify the answer:

0 ∙ 2 + 1 ∙ 5 + 1 ∙ 18 + 1 ∙ 26 + 0 ∙ 54 + 1 ∙ 106 + 1 ∙ 219 + 0 ∙ 447 = 374 = 𝑆

therefore, the obtained answer 𝑥 = (01110110) is true. This algorithm can be used to

solve any superincreasing knapsack. Additionally, because of its superincreasing

property there always exists at most one solution, because once you reach the target

sum, no subsequent weights can be added, because they will exceed the sum.

The Merkle-Hellman knapsack cryptosystem

The idea behind the Merkle-Hellman cryptosystem is creating a public and private key.

The private key has a form of a superincreasing sequence, a modulo and a factor. The

superincreasing sequence is transformed into the public key. After a message is sent

to the receiver, the receiver uses his private key to reverse the encryption process and

is able to solve the original superincreasing sequence to obtain the message.

The cryptosystem operates based on a superincreasing knapsack, which is

a sequence of numbers used to encode and decode information, however, as

presented earlier, obtaining a solution to one is relatively straightforward. To disguise

the knapsack, in other words, make the private key unidentifiable for a person from the

outside, Merkle and Hellman’s idea was to mathematically transform it using a modulo

 7

and factor (Stamp and Low 2007, 268). This way, the newly obtained knapsack 𝑇 will

not be superincreasing, because of the usage of a modulo, and hence, it will be

impossible to solve it in that same, simple way. For the purpose of this paper let us

take Alexander and Benjamin as the sender and recipient of a message, respectively.

As the Merkle-Hellman cryptosystem is a public-key cryptosystem, the disguised

knapsack 𝑇 is Benjamin’s public-key, and it is made public. Benjamin then receives

ciphertext from Alexander and applies the inverse of the transformation to obtain

a superincreasing case and then solves the knapsack, by finding the combination of

numbers in the knapsacks that add up to the ciphertext values.

Encryption of a message

In this section an example of message encryption will occur. The first step is to choose

a superincreasing knapsack 𝐾, which will enable Benjamin to create his public key and

private key. Additionally, Benjamin chooses a modulo 𝑚, which is the remainder of a

division, and factor 𝑓, satisfying the conditions that: 𝑔𝑐𝑑(𝑚, 𝑓) = 1, or in other words 𝑚

and 𝑓 are coprime, and 𝑚 is greater than the sum of all the elements of 𝐾 (Stamp and

Low 2007, 268). This ensures that the public key will consist of greater and more varied

numbers, making the encoded message more secure. A smaller 𝑚 would result in a

public key consisting of smaller numbers because there would be fewer possible

remainders, which would make the message vulnerable.

Suppose the knapsack chosen to create the private and public keys is

 𝐾 = (3, 5, 24, 33, 66, 135, 267, 546) and 𝑚 = 1081 and 𝑓 = 19. The conditions are met

as

 8

𝑚 > 3 + 5 + 24 + 33 + 66 + 135 + 267 + 546 = 1079

𝑚 is chosen as 1081, and not 1080 because 1080 has more factors, hence it

would be more difficult to find a factor 𝑓, with 𝑔𝑐𝑑(𝑚, 𝑓) = 1. The set of factors of

1081 is {1, 23, 47, 1081} and 𝑓 is a prime number, so 𝑚 and 𝑓 are coprime. To

convert the private key 𝐾 into the public key 𝑇, Benjamin computes 𝑇 as follows:

𝑇 = (𝑡0, 𝑡1, . . . , 𝑡𝑟−1) = (𝑘0𝑓(𝑚𝑜𝑑 𝑚), 𝑘1𝑓(𝑚𝑜𝑑 𝑚), … , 𝑘𝑟−1𝑓(𝑚𝑜𝑑 𝑚))

where 𝑘i is the 𝑖th element of 𝐾, 𝑖 ∈ {0,1, . . . , 𝑟 − 1}.

Benjamin’s private key is now: 𝐾 and the modular inverse: 𝑓−1(mod 𝑚), which will be

used to reverse the encryption process. The modular inverse is obtained below using

the extended Euclidean algorithm (Extended Euclidean Algorithm Calculator):

1081 = 19 ∙ 56 + 17

19 = 17 ∙ 1 + 2

17 = 2 ∙ 8 + 1

1 = 17 ∙ 1 − 2 ∙ 8

1 = 17 ∙ 1 − (19 − 17 ∙ 1) ∙ 8

1 = 17 ∙ 1 − 19 ∙ 8 + 17 ∙ 8

1 = 17 ∙ 9 − 19 ∙ 8

 9

1 = (1081 − 19 ∙ 56) ∙ 9 − 19 ∙ 8

1 = 1081 ∙ 9 − 19 ∙ 9 ∙ 56 − 19 ∙ 8

1 = 1081 ∙ 9 − 19 ∙ (9 ∙ 56 + 8)

1 = 1081 ∙ 9 − 19 ∙ 512

−512(mod 1081) = 569

hence

19−1 = 569(𝑚𝑜𝑑 1081)

𝑇 is calculated below, by the formula provided earlier:

𝑡0 = 𝑘0𝑓(mod 𝑚) = (3 ∙ 19)(mod 1081) = 57(mod 1081) = 57

𝑡1 = 𝑘1𝑓(mod 𝑚) = (5 ∙ 19)(mod 1081) = 95(mod 1081) = 95

𝑡2 = 𝑘2𝑓(mod 𝑚) = (24 ∙ 19)(mod 1081) = 456(mod 1081) = 456

𝑡3 = 𝑘3𝑓(mod 𝑚) = (33 ∙ 19)(mod 1081) = 627(mod 1081) = 627

𝑡4 = 𝑘4𝑓(mod 𝑚) = (66 ∙ 19)(mod 1081) = 1254(mod 1081) = 173

𝑡5 = 𝑘5𝑓(mod 𝑚) = (135 ∙ 19)(mod 1081) = 2565(mod 1081) = 403

 10

𝑡6 = 𝑘6𝑓(mod 𝑚) = (267 ∙ 19)(mod 1081) = 5073(mod 1081) = 749

𝑡7 = 𝑘7𝑓(mod 𝑚) = (546 ∙ 19)(mod 1081) = 10374(mod 1081) = 645

Hence, the public key is

𝑇 = (57, 95, 456, 627, 173, 403, 749, 645)

It is worth noticing that 𝑡0, 𝑡1, 𝑡2, 𝑡3 are each equal to 𝑘𝑖𝑓. This occurs because in these

four cases 𝑘𝑖𝑓 < 𝑚 . We can derive that the greater the modulo, the smaller the

number of public key elements which need an additional step of computing may be.

Therefore, the greater the modulo, the less secure may the cryptosystem be. And,

inversely, the smaller the modulo, the more elements need an additional step of

computing, and it may be more difficult for an attacker to infer the private key. Due to

the fact that an additional operation is needed to obtain the public key, it is more difficult

for a potential attacker to understand in what way the private key values were picked.

Benjamin’s private key is

𝐾 = (3, 5, 24, 33, 66, 135, 267, 546)

and

𝑓−1(mod 𝑚) = 𝑓−1(mod 1081) = 569

 11

Suppose, Alexander wants to encrypt the message 𝑀 = 𝑑𝑜𝑔. 𝑀 must be converted to

binary but each of the letters takes up 8 bits, so in total there will be 24 bits, while the

public key allows only 8-bit structures, since it consists of an eight-element sequence,

as 𝑟 = 8. To solve this problem each letter will be encrypted separately as follows:

𝑀1 = 𝑑, 𝑀2 = 𝑜, 𝑀3 = 𝑔. 𝑀1 = 01100100, 𝑀2 = 01101111, 𝑀3 = 01100111, according to

the binary representations table present in the Appendix (Figure 1). When using the

binary notation of letters in ASCII the first bit is always 0 because the letters consist of

7 bits. When Benjamin receives the message, he will have to decrypt each letter

separately, which is a limitation that is analyzed further on in this paper.

To compute the ciphertext 𝐶 Alexander sums each element of 𝑇 multiplied by the

corresponding bits of 𝑀, as follows:

𝐶1 = 0 ∙ 57 + 1 ∙ 95 + 1 ∙ 456 + 0 ∙ 627 + 0 ∙ 173 + 1 ∙ 403 + 0 ∙ 749 + 0 ∙ 645 = 954

𝐶2 = 0 ∙ 57 + 1 ∙ 95 + 1 ∙ 456 + 0 ∙ 627 + 1 ∙ 173 + 1 ∙ 403 + 1 ∙ 749 + 1 ∙ 645 = 2521

𝐶3 = 0 ∙ 57 + 1 ∙ 95 + 1 ∙ 456 + 0 ∙ 627 + 0 ∙ 173 + 1 ∙ 403 + 1 ∙ 749 + 1 ∙ 645 = 2348

This process relates to the subset sum problem because specific elements are

selected to form a sum, which is the ciphertext. These three parts of ciphertext when

put together form the message. The message is secure because someone from the

outside, that obtained the ciphertext cannot simply match it to a letter represented in

binary.

 12

Decryption of a message

The computed ciphertext 𝐶 is sent to Benjamin and he reverses the encryption process

using his private key, by operating on the received ciphertext and by using the modular

inverse.

𝐶1𝑓−1(mod 𝑚) = (954 ∙ 569)(mod 1081) = 164

𝐶2𝑓−1(mod 𝑚) = (2521 ∙ 569)(mod 1081) = 1043

𝐶3𝑓−1(mod 𝑚) = (2348 ∙ 569)(mod 1081) = 977

Due to these computations, Benjamin is able to reverse the encryption, by using the

modular inverse 𝑓−1.

Benjamin’s next step is to solve the superincreasing knapsack 𝐾 for each of the

obtained numbers: 164, 1041, and 977. When solving the superincreasing knapsack

K, if a number 𝑘𝑖 is needed to obtain the sum, the bit corresponding to it is 1, otherwise

the bit corresponding to it is 0. Below, the superincreasing knapsack

𝐾 = (3, 5, 24, 33, 66, 135, 267, 546)

is solved for 977 and the message 𝐷3 is uncovered in binary in detail, with reference

to solving the subset sum problem in a superincreasing case. The order of decrypting

the parts of the message does not matter, because they are not dependent on each

 13

other. To visualize uncovering the message in binary step by step, 𝐷3 is represented

in the following way:

𝐷3 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5𝑦6𝑦7̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

where 𝑦𝑖 ∈ {0, 1} and 𝑦𝑖 means that 𝑦𝑖 is the 𝑖𝑡ℎ digit of an r-digit number 𝐷3,

𝑖 ∈ {0,1, . . . , 𝑟 − 1} , where each 𝑦𝑖 will be exchanged with 0 or 1 . First, it is

checked whether it is possible to obtain 977 without 546 , this is done by

adding all the values except 546;

3 + 5 + 24 + 33 + 66 + 135 + 267 = 533

and 533 < 977, hence the bit corresponding to 546 is 1.

𝐷3 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5𝑦61̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

The same process is repeated with the next number.

3 + 5 + 24 + 33 + 66 + 135 + 546 = 812

 which means that 267 is needed and the bit corresponding to it is also 1.

𝐷3 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦511̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

Next, summed up are all the values except 135;

 14

3 + 5 + 24 + 33 + 66 + 267 + 546 = 944

so 135 is needed, so the corresponding bit is 1.

𝐷3 = (𝑦0𝑦1𝑦2𝑦3𝑦4111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

Next, all values are summed up except for 66;

3 + 5 + 24 + 33 + 135 + 267 + 546 = 1013, and 1013 > 977

 hence the bit corresponding to 66 is 0.

𝐷3 = (𝑦0𝑦1𝑦2𝑦30111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

Next, all the values except 33 and 66, which was concluded to be unnecessary, are

summed;

3 + 5 + 24 + 135 + 267 + 546 = 980 and 980 > 977

therefore, the bit corresponding to 33 is 0.

𝐷3 = (𝑦0𝑦1𝑦200111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

For 24;

 15

3 + 5 + 135 + 267 + 546 = 956

hence the bit corresponding to 24 is 1.

𝐷3 = (𝑦0𝑦1100111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

Now, 3 and 5 are left, so it can be concluded that to reach the desired sum, the bit

corresponding to 5 is 1 and the bit corresponding to 3 is 0. This can be checked by

adding all the values that correspond with 1 bits:

5 + 24 + 135 + 267 + 546 = 977

and

𝐷3 = (01100111)

Therefore, 𝐷3 = (01100111) and its binary notation corresponds to the character g, as

presented in the Binary Representations Table (see Appendix). Below 𝐷1 and 𝐷2 are

solved using the same principles:

To obtain D1 the knapsack 𝐾 = (3, 5, 24, 33, 66, 135, 267, 546) is solved for 164. Since,

546 > 164 and 267 > 164

The last two elements of the sequence are 0s, 𝐷1 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦500̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). Next,

 16

3 + 5 + 24 + 33 + 66 = 131, hence 𝐷1 = (𝑦0𝑦1𝑦2𝑦3𝑦4100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

Then,

3 + 5 + 24 + 33 + 135 = 200 and 𝐷1 = (𝑦0𝑦1𝑦2𝑦30100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

Similarly,

3 + 5 + 24 + 135 = 167, therefore 𝐷1 = (𝑦0𝑦1𝑦200100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

and

3 + 5 + 135 = 143, hence 𝐷1 = (𝑦0𝑦1100100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

and

3 + 24 + 135 = 162, therefore 𝐷1 = (𝑦01100100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

Now it is visible, that

5 + 24 + 135 = 164, therefore 𝐷1 = (01100100)

The obtained 8-bit structure is 𝐷1 = 𝑑, using the Binary Representations Table

 (Figure 1) .

 17

Below the knapsack 𝐾 = (3, 5, 24, 33, 66, 135, 267, 546) is solved for 1043. Let us start

with 𝐷2 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5𝑦6𝑦7̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅),

3 + 5 + 24 + 33 + 66 + 135 + 267 = 533

hence 546 is needed, and

𝐷2 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5𝑦61̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

Then using the same principles:

3 + 5 + 24 + 33 + 66 + 135 + 546 = 812, hence 𝐷2 = (𝑦0𝑦1𝑦2𝑦3𝑦4𝑦511̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

and

3 + 5 + 24 + 33 + 66 + 267 + 546 = 944, therefore 𝐷2 = (𝑦0𝑦1𝑦2𝑦3𝑦4111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

and

3 + 5 + 24 + 33 + 135 + 267 + 546 = 1013, hence 𝐷2 = (𝑦0𝑦1𝑦2𝑦31111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

Next,

3 + 5 + 24 + 66 + 135 + 267 + 546 = 1046, hence 𝐷2 = (𝑦0𝑦1𝑦201111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

 18

and

3 + 5 + 66 + 135 + 267 + 546 = 1022, therefore, 𝐷2 = (𝑦0𝑦1101111̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

The numbers left are 3 and 5 and it can be observed that

1038 + 5 = 1043, therefore, 𝐷2 = (01101111)

Alexander finds that 𝐷1 = 𝑑, using the Binary Representations Table.

Taken together, he has uncovered three letters: d, o, g. After combining them into one

message, 𝐷 = 𝑑𝑜𝑔 it can be observed that it is the same message that was sent by

Alexander, 𝑀 = 𝑑𝑜𝑔. This outcome confirms that the process of encryption and

decryption was successful. Encryption and decryption of a short word is easier than

when dealing with multiple bit sequence cases, but it can show how the operations are

carried out and can demonstrate the Merkle-Hellman cryptosystem’s effectiveness in

conveying information.

The upcoming sections of this paper combine knowledge of public-key cryptography

and linear algebra to perform an attack on the Merkle-Hellman cryptosystem.

Defining lattices

To understand the lattice reduction attack, a few definitions and principles of linear

algebra must be understood. In this paper, vectors are denoted using the international

standard notation 𝑣⃗ = (
𝑣⃗𝑎

𝑣⃗𝑏
). For the purpose of this paper let us define a lattice as the

 19

set of linear combinations of linearly independent vectors {𝑣⃗1, 𝑣⃗2, …, 𝑣⃗𝑛} ∈ ℝ𝑏, where 𝑏

is the number of directions in which the vectors can exist, where 𝑛 ≥ 𝑏 with

coefficients in ℤ (Micciancio 2013, 3),

𝐿 = 𝑎1𝑣⃗1 + 𝑎2𝑣⃗2 + … + 𝑎𝑛𝑣⃗𝑛

where 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℤ (Polách 2022). Linear independence is defined as follows:

A set of vectors {𝑣⃗1, 𝑣⃗2, …, 𝑣⃗𝑛} is linearly independent if the vector equation

𝑥1𝑣⃗1 + 𝑥2𝑣⃗2 + … + 𝑥𝑛𝑣⃗𝑛 = 0

has only one solution, that is:

𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 0

(Margalit and Rabinoff 2019).

 20

Figure 2: A lattice spanned by different bases (created by the author of this paper)

Figure 2 represents an example lattice spanned, meaning generated, using linear

combinations of the basis vectors, by the vectors 𝑠1⃗⃗ ⃗ and 𝑠2⃗⃗ ⃗. For the purpose of further

analysis, it is important to understand that the same lattice can be spanned by different

bases, here, represented as u1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ (Louis 2023). A basis is a set of linearly

independent vectors.

Lattice reduction and the LLL algorithm

Lattice reduction is a technique that can be used to find short, nearly orthogonal

vectors. The orthogonality defect can be used to check if vectors are nearly

orthogonal. It compares the product of the lengths of the basis vectors with the volume

 21

of the parallelepiped they define (Wikipedia contributors, “Lattice Reduction” 2024).

This means that the closer the orthogonality defect is to 1, the more orthogonal the

basis vectors are. The LLL algorithm is a lattice reduction algorithm invented by

Lenstra, Lenstra and Lovász in 1982. One of the subparts of the LLL is the Gram-

Schmidt Process, which is responsible for finding orthonormal vectors, meaning ones

that are perpendicular and of the same length. The process is performed as follows

(Taboga 2024):

The vectors that we start with are 𝑠1⃗⃗ ⃗ and 𝑠2⃗⃗ ⃗. The vectors that are to be obtained are

denoted as 𝑢1⃗⃗⃗⃗ and 𝑢2⃗⃗⃗⃗ . The notions used in the Gram-Schmidt Process are: the

magnitude and the dot product of two vectors. For vectors to be orthonormal, the

conditions below must be met:

For each vector 𝑢1⃗⃗⃗⃗ , . . . , 𝑢𝑘⃗⃗⃗⃗ :

|𝑢𝑗⃗⃗ ⃗ | = 1 for any 𝑗 and 𝑢𝑗⃗⃗ ⃗ • 𝑢𝑘⃗⃗⃗⃗ = 0 if 𝑗 ≠ 𝑘

The first step is normalization, which refers to changing a vector into a unit vector:

𝑢1⃗⃗⃗⃗ =
1

|𝑠1⃗⃗ ⃗ |
 ∙ 𝑠1⃗⃗ ⃗

then a vector projection 𝑠 2 is obtained by mapping the vector 𝑠2⃗⃗ ⃗ onto a line parallel to

𝑢1⃗⃗⃗⃗

𝑠2̂ = (𝑠2⃗⃗ ⃗ • 𝑢1⃗⃗⃗⃗) ∙ 𝑢1⃗⃗⃗⃗

 22

next compute residual, which is the part of the vector that is not aligned with the

direction of the projection:

𝜀2⃗⃗ ⃗ = 𝑠2⃗⃗ ⃗ − 𝑠2̂

And finally, normalize:

𝑢2⃗⃗⃗⃗ =
1

|𝜀2⃗⃗ ⃗|
∙ 𝜀2⃗⃗ ⃗

For the purpose of understanding how this process works an attempt of accomplishing

it is presented below.

Let us consider the vectors:

𝑠1⃗⃗ ⃗ = (
1

−1
) and 𝑠2⃗⃗ ⃗ = (

0

−2
)

presented below in a visual form:

 23

Figure 3: The vectors 𝑠1⃗⃗ ⃗ and 𝑠2⃗⃗ ⃗ presented on a plane using GeoGebra

The Gram-Schmidt Process is presented below with reference to the theoretical

framework explained on pages 21 and 22.

𝑢1⃗⃗⃗⃗ =
1

| 𝑠1⃗⃗ ⃗|
∙ 𝑠1⃗⃗ ⃗ =

1

√12 + (−1)2
∙ (

1

−1
) =

1

√2
∙ (

1

−1
) =

(

√2
2

−
√2
2

)

and

𝑠2̂ = (𝑠2⃗⃗ ⃗ • 𝑢1⃗⃗⃗⃗) ∙ 𝑢1⃗⃗⃗⃗ =

(

(
0

−2
) •

(

√2
2

−
√2
2

)

)

∙

(

√2
2

−
√2
2

)

=

 24

= [0 +
2

√2
] ∙

(

√2
2

−
√2
2

)

= [√2] ∙

(

√2
2

−
√2
2

)

= (

2
2

−
2
2

) = (
1

−1
)

and

𝜀2⃗⃗ ⃗ = 𝑠2⃗⃗ ⃗ − 𝑠2̂ = (
0

−2
) − (

1

−1
) = (

−1

−1
)

and

𝑢2⃗⃗⃗⃗ =
1

|𝜀2⃗⃗ ⃗|
∙ 𝜀2⃗⃗ ⃗ =

1

√(−1)2 + (−1)2
∙ (

−1

−1
) =

1

√2
∙ (

−1

−1
) =

(

 −

√2
2

−
√2
2

)

The obtained orthogonal vectors are

𝑢1⃗⃗⃗⃗ =

(

√2
2

−
√2
2

)

and 𝑢2⃗⃗⃗⃗ =

(

 −

√2
2

−
√2
2

)

Figure 4 presents the vectors 𝑠1⃗⃗ ⃗ , 𝑠2⃗⃗ ⃗ and the orthogonalized vectors 𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ on the

same set of axes.

 25

Figure 4: The vectors 𝑠1⃗⃗ ⃗, 𝑠2⃗⃗ ⃗,𝑢1⃗⃗⃗⃗ , and 𝑢2⃗⃗⃗⃗ presented on a plane using GeoGebra

To examine if these vectors really are orthonormal the conditions are checked:

|𝑢1⃗⃗⃗⃗ | = √
√2

2
∙
√2

2
+ (−

√2

2
) ∙ (−

√2

2
) = √

1

2
+

1

2
= 1

and

|𝑢2⃗⃗⃗⃗ | = √(−
√2

2
) ∙ (−

√2

2
) + (−

√2

2
) ∙ (−

√2

2
) = √

1

2
+

1

2
= 1

and

𝑢1⃗⃗⃗⃗ • 𝑢2⃗⃗⃗⃗ =
√2

2
∙ (−

√2

2
) + (−

√2

2
) ∙ (−

√2

2
) = −

1

2
+

1

2
= 0

Hence both conditions are satisfied, therefore 𝑢1⃗⃗⃗⃗ and 𝑢2⃗⃗⃗⃗ are orthonormal.

 26

The presented process is the first step in the LLL algorithm. It is explained in the steps

in Figure 5.

Figure 5: The LLL algorithm (Source No. 7 in Bibliography)

With reference to Figure 5 and the text by Hoffstein, the steps of the LLL algorithm will

be explained. At each step, the vectors 𝑣⃗1⃗⃗⃗⃗
∗
, … , 𝑣⃗𝑘⃗⃗⃗⃗

∗
 form an orthogonal set obtained by

applying the Gram-Schmidt process to the current values of 𝑣⃗1⃗⃗⃗⃗ , … , 𝑣⃗𝑘⃗⃗⃗⃗ , where 𝑘 is an

index used to iterate through the basis vectors of the lattice and 𝑣⃗1⃗⃗⃗⃗
∗
 refers to the part

of the orthogonalized set. The associated quantity 𝜇𝑖,𝑗 defined as
𝑣𝑖⃗⃗ ⃗∙𝑣1⃗⃗⃗⃗

∗

|𝑣1⃗⃗⃗⃗
∗
|
2 , and is the

coefficient used to perform the size reduction step in the algorithm (Hoffstein et al.

2014, 444).

 27

The first step is to input a basis for a lattice, where the vectors are assumed to be

linearly independent. Then, the step in line [3] begins the Gram-Schmidt Process

discussed throughout pages 21 – 24, starting from the second vector. Each current

vector is adjusted by reducing its size as presented in line [6]. This is a part of the [Size

Reduction] step. The [Lovász Condition] determines whether vectors are in the correct

positions, meaning ordered by their length. This is a crucial step of the algorithm as it

ensures that the orthogonalized vectors are short, which leads to efficiently creating a

reduced basis. If the condition is satisfied for 𝑘, the algorithm checks whether it is

satisfied for 𝑘 + 1, and so on. If the [Lovász Condition] is not satisfied, it indicates that

the vectors are not in the correct order, and the [Swap Step] is performed, meaning

that the 𝑘𝑡ℎ vector is interchanged with the (𝑘 − 1)𝑡ℎ vector. Line [12] is responsible for

setting such a value of 𝑘, so that the algorithm steps back to check the order of the

vectors in case there are further adjustments of the order needed. This process is

repeated until all the [Lovász Condition] holds true for all vectors. Once it is satisfied,

the loop ends as seen in line [14], and the LLL algorithm outputs a reduced basis for

the lattice, which can be seen in line [15].

Attacking the cryptosystem

With reference to the previously encrypted and decrypted messages using the Merkle-

Hellman cryptosystem, let us attack the cryptosystem using lattice reduction, through

the Lenstra-Lenstra-Lovász algorithm. For the purpose of this paper, we will refer to

the attacker as Teresa.

Alexander sends Benjamin a ciphertext block 𝐶3 = 2348 encrypted using the public key

𝑇 = (57, 95, 456, 627, 173, 403, 749, 645). Teresa knows this information allowing her

 28

to solve the matrix equation 𝑇𝑈 = 𝐶, where 𝑈 consists only of 0s and 1s. If 𝑈 is a

solution to 𝑇𝑈 = 𝐶, then the block matrix equation

𝐽𝑉 = [
𝐼𝑟×𝑟 0𝑟×1

𝑇1×𝑟 −𝐶1×1
] [

𝑈𝑟×1

11×1
] = [

𝑈𝑟×1

01×1
] = 𝑊

holds, since 𝐽𝑉 = 𝑊 is equivalent to 𝑈 = 𝑈 and 𝑇𝑈 − 𝐶 = 0. To ensure that a 0 is

produced as the last entry of 𝐽𝑉, 𝐶 occurs with a negative sign in the matrix (Stamp

2005, 203-210). 𝐽 is the block matrix combining the identity matrix 𝐼, which helps to

maintain the structure of a lattice and the public key 𝑇, along with the ciphertext 𝐶, sent

by Alexander. 𝑉 is a matrix that includes 𝑈, which is the message sent by Alexander

made of 0s and 1s and 𝑊 is the result of matrix multiplication, one of which contains

the original message. Given that the public key is a sequence consisting of 8 elements,

Teresa knows that 𝑟 = 8. Hence, she acquires the block matrix equation:

𝐽𝑉 = [
𝐼8×8 08×1

𝑇1×8 −𝐶1×1
] [

𝑈8×1

11×1
] = [

𝑈8×1

01×1
] = 𝑊

and is able to construct the block matrix 𝐽.

𝐽 =

[

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
57 95 456 627 173 403 749 645 −2348]

 29

Given that Teresa is able to find a solution 𝑉 to the block matrix equation 𝐽𝑉 = 𝑊 she

will consequently find a solution 𝑈 to the original equation 𝑇𝑈 = 𝐶, and hence obtain

the bit structure encrypted by Alexander.

To find a solution, Teresa executes the LLL algorithm, with reference to the theoretical

framework presented on pages 25 and 26. The LLL algorithm presented in this paper

is executed using the mathematical software SageMath. A limitation of this software is

that it produces only the final output, and not the steps of the LLL algorithm. In terms

of this paper, it means that only the theoretical framework of the LLL algorithm is

presented, as well as the input and output of the algorithm. Such a gradual explanation

could not fit in the 4000-word limit. By providing 𝐽 as an input, as seen in Figure 6 in

the Appendix, the software outputs the short vectors in the lattice, represented in the

matrix 𝐽′, as follows:

𝐽′ =

[

−1 0 0 0 0 −2 −1 0 1
0 0 1 0 −2 1 0 −1 0
0 0 1 1 −1 0 0 2 −1
0 0 0 −1 0 −1 2 0 −1

−2 −2 0 1 0 0 0 −1 1
1 −1 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0 2
0 0 1 0 1 1 0 −1 −1
0 0 0 2 −1 −1 1 −1 0]

Now, Teresa has to examine which column has the right form to be a solution to the

knapsack problem, that is; the column has to consist of 1’s and 0’s only, and the digit

in the last row must equal 0. This is, because the public key 𝑇 is a sequence of eight

numbers, and the obtained matrix 𝐽′ has nine rows. The only column that has the right

form to be the solution is the third column, so Teresa denotes it:

 𝑡1 = (01100111)

 30

Teresa obtained 𝑡1, so the final thing left is converting 𝑡1 back from binary. The two

other attacks executed can be observed in the Appendix LLL Algorithm, and their

outcomes are

𝑡2 = (01101111)

and

𝑡3 = (01100100)

A problem that Teresa encounters now, is that she does not possess information about

the form of the message encrypted by Alexander. She only possesses the binary

output and has to guess whether it is encrypted text, or for example a decimal number.

Given these outputs Teresa has to try and recover the plaintext. Below, the way to

uncover a decimal message is presented.

Teresa decides to check what decimal numbers the binary sequences are equal to,

and she obtains:

𝑡1 = 0 ∙ 27 + 1 ∙ 26 + 1 ∙ 25 + 0 ∙ 24 + 0 ∙ 23 + 1 ∙ 22 + 1 ∙ 21 + 1 ∙ 20 = 103

and

𝑡2 = 0 ∙ 27 + 1 ∙ 26 + 1 ∙ 25 + 0 ∙ 24 + 1 ∙ 23 + 1 ∙ 22 + 1 ∙ 21 + 1 ∙ 20 = 111

and

 31

𝑡3 = 0 ∙ 27 + 1 ∙ 26 + 1 ∙ 25 + 0 ∙ 24 + 0 ∙ 23 + 1 ∙ 22 + 0 ∙ 21 + 0 ∙ 20 = 100

Teresa can suspect that the original message was a word. She converts the obtained

decimal numbers into letters using the Binary Representations Table (see Appendix)

and discovers the following:

𝑡1 = 𝑔 and 𝑡2 = 𝑜 and 𝑡3 = 𝑑

Therefore, it can be concluded that 𝑇 = 𝐷, hence Teresa successfully performed the

attack on the Merkle-Hellman cryptosystem, using the LLL algorithm. This

demonstrates its effectiveness in attacking the Merkle-Hellman cryptosystem.

A limitation of this way of decrypting a message is that it is time-consuming, due to the

fact that each part of the message must be obtained individually, which also creates

additional room for error. A limitation of the LLL algorithm arises from the fact that it

may fail to produce a correct solution, because the lattice might not contain a short

vector that corresponds to the solution. Nevertheless, broken in 1981, the Merkle-

Hellman cryptosystem was considered insecure, and could not be effectively used.

Conclusion

Throughout this paper the theory behind the Merkle-Hellman system and lattice

reduction was presented. The encryption and decryption processes were carried out

using the unique properties of superincreasing sequences and provided insight into

them, while the lattice reduction was more focused on calculations including vectors

and matrices. The most crucial step throughout this paper, is acknowledging the

importance of the superincreasing properties of the private key, and the application of

 32

the LLL algorithm, which can be effective, but it does not always yield a solution. This

exposes the principles and vulnerabilities of the Merkle-Hellman cryptosystem, shown

using an example and creates a better perception of them. By examining the usage

of the LLL-algorithm on the Merkle-Hellman cryptosystem, this paper demonstrates

vulnerabilities exploited by lattice reduction techniques.

 33

Bibliography

1. ASCII Table - ASCII Codes, Hex, Decimal, Binary, Html.

www.rapidtables.com/code/text/ascii-table.html.

2. Cacchiani, Valentina, et al. “Knapsack Problems — an Overview of Recent

Advances. Part I: Single Knapsack Problems.” Computers & Operations

Research, vol. 143, July 2022, p. 105692.

https://doi.org/10.1016/j.cor.2021.105692.

3. Calculator Suite - GeoGebra. www.geogebra.org/calculator.

4. DG. “Merkle-Hellman Knapsack-based Public Key Cryptosystem - Part 3.”

YouTube, 14 Dec. 2020, www.youtube.com/watch?v=8eIGGOw2U3A.

5. Galbraith, Steven. Mathematics of Public Key Cryptography. 2nd ed., 2018.

6. Hellman, Martin E. “An Overview of Public Key Cryptography: With a public

key cryptosystem, the key used to encipher a message can be made public

without compromising the secrecy of a different key needed to decipher that

message.” IEEE COMMUNICATIONS SOCIETY MAGAZINE, 1978, www-

ee.stanford.edu/~hellman/publications/31.pdf. Accessed 10 Oct. 2024.

7. Hoffstein, Jeffrey, et al. “An Introduction to Mathematical Cryptography.”

Undergraduate texts in mathematics, 2014, https://doi.org/10.1007/978-1-

4939-1711-2.

8. Lenstra, Arjen K., et al. “Factoring Polynomials With Rational Coefficients.”

Mathematische Annalen, vol. 261, no. 4, Dec. 1982, pp. 515–34.

https://doi.org/10.1007/bf01457454.

 34

9. Liu, Jiayang, et al. “An Improved Attack on the Basic Merkle–Hellman

Knapsack Cryptosystem.” IEEE Xplore, Apr. 2019, p. 1. IEEEXplore,

ieeexplore.ieee.org/abstract/document/8701428.

10. Louis, Frederik. Lattice Reduction Attack on the Merkle-Hellman

Cryptosystem. Institut Teknologi Bandung, 2023,

informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2022-

2023/Makalah2/Makalah2-Kriptografi-2023%20(25).pdf.

11. Margalit, Dan, and Joseph Rabinoff. Linear Independence. 2019,

textbooks.math.gatech.edu/ila/linear-independence.html. Accessed 10 Sept.

2024.

12. Micciancio, Daniele. Foundations of Lattice Cryptography. 2013, p. 3.

www.math.uci.edu/~asilverb/Lattices/Slides/Daniele1uci13-handout.pdf.

13. Ortega, Juan. “LATTICE REDUCTION ALGORITHMS.” CSUSB

ScholarWorks, scholarworks.lib.csusb.edu/etd/1436.

14. Polách, Juraj. Lattice Basis Reduction Using LLL Algorithm with Application to

Algorithmic Lattice Problems. Department of Mathematics Uppsala University,

Feb. 2022, uu.diva-portal.org/smash/get/diva2:1641300/FULLTEXT01.pdf.

Accessed 10 Sept. 2024.

15. Shamir, Adi. “A Polynomial-time Algorithm for Breaking the Basic Merkle -

Hellman Cryptosystem.” IEEE Transactions on Information Theory, vol. 30, no.

5, Sept. 1984, pp. 699–704. https://doi.org/10.1109/tit.1984.1056964.

16. Stamp, Mark. Information Security: Principles and Practices. 2005,

www.gbv.de/dms/hebis-darmstadt/toc/133619745.pdf.

17. Stamp, Mark, and Richard M. Low. Applied Cryptanalysis. 2007,

https://doi.org/10.1002/9780470148778.

 35

18. Taboga, Marco. “Gram-Schmidt Process.” StatLect, www.statlect.com/matrix-

algebra/Gram-Schmidt-process. Accessed 13 Sept. 2024.

19. Towers, Matthew. “Definitions and Matrix Algebra.” UCL, UCL, 2021,

www.ucl.ac.uk/~ucahmto/0007_2021/2-1-definitions-and-matrix-algebra.html.

20. Extended Euclidean Algorithm

Calculator. www.extendedeuclideanalgorithm.com/calculator.php?mode=2&n

=1081&b=19#num.

21. Use SageMath Online. cocalc.com/features/sage.

22. Wikipedia contributors. “Lattice Reduction.” Wikipedia, 22 Jan. 2024,

en.wikipedia.org/wiki/Lattice_reduction.

 36

Appendix

 Binary Representations

 Figure 1: Binary Representations Table

 37

LLL Algorithm

Figure 6 : LLL Algorit hm for 2348

 38

Figure 7: LLL Algorithm for 2521

 39

Figure 8 : LLL Algorit hm for 954

	Introduction and background information to the cryptosystem
	Subset sum problem
	The Merkle-Hellman knapsack cryptosystem
	Encryption of a message
	Decryption of a message

	Defining lattices
	Lattice reduction and the LLL algorithm
	Attacking the cryptosystem

	Conclusion
	Bibliography
	Appendix
	Binary Representations
	LLL Algorithm

