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Introduction: 

Cartography is the discipline dealing with the creation, distribution, and study of maps 

(ScienceDirect). The actual topographic surface of Earth is not an appropriate reference surface to 

perform cartographic analysis. Its shape is very complex due to its roughness - the presence of high 

mountains and deep oceans, which results in varying altitudes. A better reference Earth model is 

represented as a geoid. The geoid is a surface of constant potential energy that coincides with mean 

sea level over the oceans. It resembles a flattened sphere with numerous undulations caused by 

gravitational irregularities (Li & Götze, 2001). Nevertheless, the geoid shape is not precise enough 

for geodetic studies and the mathematically exact reference surface that fits the geoid shape is 

introduced. It is called the oblate ellipsoid of revolution - a shape obtained as a consequence of the 

ellipse rotation about its minor axis (Osborne, 2013). 

The aim of this investigation is to explore the area and the distances distortion resulting from 

applying the Mercator projection as the model of Earth. The work will firstly introduce the idea of 

the representation of the latitude and the longitude on the sphere, as well as representing the 

distances between the points on the curved surface. Then, projecting a sphere into the rectangular 

plane will be explained. The analogical to the sphere model analysis of the cylindrical projection 

will be presented. The next part of the exploration will focus on providing the examples of the size 

and distances distortions.  



Image 1: The model of spherical Earth with basic cartographical terms
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The basic cartographical terms used throughout the paper are: latitude ɸ, longitude λ, meridians and 

parallels. The following terms will be explained later, in the section regarding the Earth as a sphere. 

To remind the reader and enhance understanding, the image with Earth model with objects marked 

in the list above is presented (Image 1).  

There are many ways to represent the latitude-longitude data indicated on three-dimensional shape 

by the two-dimensional map. A cartographic map is a projection defined by two functions x(ɸ,λ) 

and y(ɸ,λ), where (x, y) state the plane Cartesian coordinates corresponding to the latitude and 

longitude coordinates (ɸ, λ) (Osborne, 2013). Different projections are characterized by different 

properties - the most desirable features concern preservation of angles, area, shape and direction. 

For navigation systems the most important aspect is correct bearing - map projections that satisfy 

this condition are conformal map projections (Fletcher, 2023). Bearing is the angle in degrees 

measured clockwise from north. An example of the most commonly used conformal map projection 

is normal Mercator projection. It is used in aeronautical maps, nautical charts and maps representing 

time zones. It does not deform the real shapes and conserves true bearings. However, the 

disadvantage of this method is the distortion of sizes - as the objects approach the poles, they appear 

to be disproportionately larger compared to their real size and to the objects located closer to the 

Equator  (Fletcher, 2023). The map below presents the true sizes (darker blue) of the countries 

compared to their appearance on the Mercator (lighter blue): 



Image 2: The sizes of countries on the Mercator projection and their real size
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The Earth as a sphere: 

The Earth is an ellipsoid with a semi-major axis a (equatorial radius) and semi-minor axis b (Image 

3).  

  

To approximate the radius R of the sphere obtained form an ellipsoid the triaxial arithmetic mean is 

taken (Osborne, 2013). Such approach (instead of geometric mean) is needed to reflect the fact, that 

Earth radius is greater when measured between two point on the Equator than when measuring 

between the northern and southern poles:  

,  

. 

For this radius R, the circumference C equals: 

  

Thus, one degree of latitude on the equatorial plane corresponds to: 

 . 

For the model and calculations presented below, the assumption than an Earth is a unit sphere is 

introduced. Nevertheless for calculating the actual distances or lengths of some line segments, the 

scaling will be adjusted so that the radius of the sphere r=1 matches the radius R of the Earth. 



Image 3: The model of Earth as an ellipsoid 

a = 6378.1370 k m b = 6356.7523 k m

R =
a + a + b

3
=

6378.1370 + 6378.1370 + 6356.7523
3

≈ 6371 [k m]

C = 2πR = 2 ⋅ π ⋅ 6371 ≈ 40030 [k m]

40030
360

= 111.2 [k m]
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The position of point P is considered (Image 4). Latitude ɸ is the angle between the point P and the 

point on the Equatorial plane, that has the same x coordinate as P. Its value belongs to the interval 

[−90°, 90°]. Longitude λ is the angle between the plane of the meridian passing through point P and 

the plane of the prime meridian. Its value belongs to the interval [-180°, 180°) (Osborne, 2013). The 

interval is opened, since the meridian 180° and -180° on a sphere would be exactly the same. Such 

approach prevents double counting the same longitude λ. 

 



Image 4: The model of Earth as a sphere



Image 5: Deriving the formula for the length of a small circle 
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The small circle is the circumference of the sphere parallel to the equatorial plane not being the 

equatorial radius. To calculate its radius, the latitude ɸ should be found by measuring the angle 

between the point P, which lies on the chosen small circle, and the point on the Equatorial plane, 

that has the same x coordinate as P. Its cosine value indicates the fraction by which the length of the 

Equator should be scaled. Since the model is a sphere, the radius R is sketch with an angle ɸ in 

relation to the Equator plane. From the diagram (Image 5), I derive the relation: 

 

 

where: p(ɸ) - the function of the radius of the small circle. 

The sphere Earth can be placed in the three dimensional coordinate system. 

To find the latitude ɸ, the angle at the origin between the point P and the point P’ on the XY plane -  

a point that has the same x and y coordinate as P, but z coordinate 0 - should be analyzed. To 

determine the latitude ɸ, its tangent will be calculated. It is the ratio between the opposite side Z - 

the vertical distance from the equatorial XY plane to the point P - and the distance OP’. To 

determine the length of OP’, the Pythagorean theorem should be used. The other sides of the 

p(ϕ)
R

= cosϕ

p(ϕ) = Rcosϕ

 
Image 6: Determining the latitude on the sphere
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triangle are X and Y - the distances from the origin O to the x and y coordinates of the point P’ in the 

coordinate system.  

From the diagram (Image 6), the relation is derived: 

 

 

where ɸ - latitude, 

X - the distance of the point P’  from the origin to its x coordinate, 

Y - the distance of the point P’  from the origin to its y coordinate, 

Z - the distance of the point P from the Equatorial plane to the north or to the south. 

To find the longitude λ the angle between the prime meridian (0°) XZ plane and the plane of the  

meridian on which the point P lies should be calculated. The plane YZ represents the plane of the 

meridian 90°. Point P’ preserves the same x and y coordinates as the point P, but it is transferred to 

the Equatorial plane, so its z coordinate equals 0. To find longitude λ, its tangent value will be 

determined. It is the ratio between the distance Y of the point P’ from XZ plane to the east or to the 

west and its distance X from the YZ plane. From the diagram (Image 7), the relation is derived: 

tanϕ =
Z

X2 + Y 2

ϕ = arctan(
Z

X2 + Y 2
)

 
Image 7: Determining the longitude on the sphere
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where λ - longitude. 

Cylindrical projection: 

The idea of a cylindrical projection is to present a three-dimensional sphere as a two-dimensional 

rectangle. The sphere is inscribed into the cylinder (represented on the Image 8), whose radius is the 

same as the equatorial radius R. Only the lateral area of a cylinder is considered. The generator of 

the cylinder is the meridian at which the model is „cut” and unfolded. It is stated at λ=180°. After 

that, the cylinder forms a two-dimensional, rectangular map. The x-axis on the projection 

corresponds to the circumference of the Equator on the globe. The y-axis on the projection 

represents a prime meridian and its length corresponds to the Earth the diameter between the 

northern and southern poles. To obtain a projection, the meridians are projected on the plane 

according to the formula (Miller, 1942): 

 

where: X - the spacing of meridians on the projection. 

The projection enforces the spacing of parallels described as (Miller, 1942): 

tanλ =
Y
X

λ = arctan(
Y
X

)



Image 8: The cylindrical projection 

X = R λ
π

180
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where: Y - the spacing of parallels on the projection. 

Since the transformations listed above are not the aim of the investigation and will not be directly 

used in calculations they will not be analyzed in details. Nevertheless, the future problem stated in 

this paper will derive conclusions from that.  

When it comes to Cartesian coordinates, the fundamental origin for Mercator is the point O on the 

equator, x-axis includes the eastward direction of the projected equator and the positive y-axis is 

taken as the northern area of projected meridian through O. Any point on the Earth model can be 

denoted as an ordered pair of coordinates (ɸ , λ) (Osborne, 2013). Mercator wanted his projection to 

satisfy the following conditions: the bearings are preserved, the north-south direction is vertical, the 

east-west direction is horizontal and the length of the equator is preserved (Vezie, 2016). 

Y = R ⋅ ln(tan(45∘ +
ϕ
2

))



Image 9: The Mercator projection map 
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On the sphere, all meridians intersect at the poles, but on normal cylindrical projection they do not 

intersect at all. Hence, the projection extents to infinity in north-south y direction, which can be 

checked using the Equation 4: 

 

 

 

 

 

 

The implication of that property is the truncation of the Mercator projection at the latitude smaller 

than 90°/-90°. The areas in the regions approaching poles become uncontrollably enlarged and 

deformed - which is visible when looking at Antarctica (Image 9).  

On the projection, all parallels are of equal width, so all of them are of the same length as the 

equator. However, on the sphere the true length of parallel corresponds to Rcosɸ (Equation 1). The 

parallel scale factor k is the ratio of the length of a parallel on the projection to the corresponding 

true length. It is equal to: 

, 

where: k - the parallel scale factor. 

Y = 6371 ⋅ ln(tan(45∘ +
90∘

2
)) = 6371 ⋅ ln(tan(45∘ + 45∘)) = 6371 ⋅ ln(tan(90∘))

tan90∘ = undef ined

f (90∘) → + ∞

Y = 6371 ⋅ ln(tan(45∘ +
−90∘

2
)) = 6371 ⋅ ln(tan(45∘ − 45∘)) = 6371 ⋅ ln(tan(0∘))

ln0 = undef ined

f (−90∘) → − ∞

k =
Rcos0∘

Rcosϕ
=

R ⋅ 1
Rcosϕ

=
1

cosϕ
= secϕ



Image 10: The function of the parallel 

scale factor k
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The parallel scale factor k measures how distances along the parallels (east-west direction) are 

distorted compared to their true size on Earth. It increases as the latitude ɸ increases (Image 10). 

The only parallel, where there is no distortion is the equator. There, the latitude ɸ is 0°, so: 

 

It means that the length on the projection exactly corresponds to the length on the sphere. The 

parallel scale factor k increases to infinity as the poles are approached, since their latitude ɸ is 

undefined (Image 10). The practical implication of that is using the projections other than Mercator 

for the polar maps.  

As the parallels on the Earth approaches the poles, the distances between them decreases (Image 1). 

However, on the Mercator their spacing differs (Image 9). Thus, despite the fact, that the meridians 

preserve their length, the distances measured along them in relation to parallels are distorted. To 

express y coordinate Y on the Mercator projection, the function including latitude ɸ is calculated. It 

implies the vertical scale factor h. The projection is conformal, so it preserves the angle between 

two curves that cross each other on Earth on the projection. One of the assumptions of the 

conformal map is that its parallel scale factor k is the same as the vertical scale factor h (Rajput, 

2024). Thus, using the Equation 5: 

 

k = sec0∘ = 1

h = k = secϕ

 
Image 11: Greenland and DRC areas on the Mercator projection
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The real world example that can be used to represent the distortions implied by the scale factors k, h 

can be analyzed comparing the area of Greenland (2 166 000 km2) and Democratic Republic of 

Congo (2 345 000 km2). In fact, their true size is very similar. The Democratic Republic of Congo is 

bigger than Greenland by: 

 

The Image 11 represents the Mercator projection. The area labelled „Grenlandia” shows the 

dimensions of Greenland on the Mercator projection, while the greenish shape is its real size. The 

blue shape is the real size of the Democratic Republic of Congo.  

To calculate the area that is displayed on the Mercator projection, the area scale factor 𝜇A(ɸ) is used.  

It informs by how much the true area was enlarged after displaying in the projection. It is expressed 

as the product of parallel k and vertical h scale factors (Equation 6): 

 

where 𝜇A(ɸ) - area scale factor. 

 

Where: AMercator  - area displayed on the Mercator projection, 

ATrue - the true area of an object.  

To find the latitudes ɸ needed for the calculations, the center of each region will be determined. To 

find it, the middle of the latitude ɸ between the most northern and most southern point of the region 

will be found. I will find the coordinated of this points using an online website (Source 2). 

For Greenland: 

 

For Democratic Republic of Congo: 

 

The center of Greenland is placed approximately at the latitude ɸ of 71.70°. The scale factor of area 

is (Equation 7): 

 

Democratic Republic of Congo area crosses the equator and is placed much further from the poles. 

The center of the continent is placed around latitude ɸ of 10°. Thus, its scale factor of area equals 

(Equation 7): 

 

% Δsize =
2 345 000 − 2 166 000

2 345 000
⋅ 100 % ≈ 7.63 %

μA(ϕ) = k ⋅ h = sec(ϕ) ⋅ sec(ϕ) = sec2(ϕ)

AMercator = μA(ϕ) ⋅ ATrue

83.63∘ + 59.77∘

2
= 71.70∘

5.38∘ + (−13.46)∘

2
= − 4.04∘

μA(ϕ) = sec2(71.70∘) ≈ 10.143

μA(ϕ) = sec2(−4.04∘) ≈ 1.005
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Thus the areas displayed on the Mercator projection are (Equation 8): 

Greenland: 

 

Democratic Republic of Congo: 

 

The following results implies that the area of Greenland on the Mercator projection is over 10 times 

exaggerated compared to the area of Democratic Republic of Congo and the actual area on the 

sphere. Democratic Republic of Congo area on the Mercator projection does not vary much from 

the actual size.  

Distances on the Mercator projection: 

The distance can be calculated either along a loxodrome or along an orthodrome. A loxodrome is a 

curve that cuts all meridians of a rotating surface at the same angle (Kos et al., 1999). Thus, by 

traveling along the loxodrome, the correct bearing is preserved. An orthodrome is the intersection of 

the sphere with a plane containing the centre of the sphere (Petrović, 2013). When determining the 

distances on the Mercator projection, the path of a loxodrome is used, while when determining the 

distanced on the sphere, the path of an orthodrome is used. The distances determined using 

orthodrome are always shorter or equal to loxodrome distances. For example, the route between 

AGreenland on the Mercator = 10.143 ⋅ 2 166 000 ≈ 21 969 738 [k m2]

ADRC on the Mercator = 1.005 ⋅ 2 345 000 ≈ 2 356 725 [k m2]



Image 12: The loxodrome and orthodrome on the sphere  
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Paris and New York by the loxodrome track takes approximately 5295 km, while by the orthodrome 

5069 km (Bertici & Herbei, 2014).  

1. Calculating the distance on the Mercator projection (along the loxodrome) 

To calculate the distance |AB| on the Mercator projection, the length of the arc of the loxodrome 

should be found. Nevertheless, the derivation of the formula requires implying differential 

geometry, which is beyond the topic investigated. The formula for the distance between the points 

ST is (Kos et al., 1999): 

  

where: |ST|M - the distance between points S and T on the Mercator projection 

𝜇 - angle at which the loxodrome cuts the meridians. 

The cos𝜇 value in the expression determines by how much is the distance on the Mercator 

projection elongated compared to the true distance.  

2. Calculating the distance on the sphere (along the orthodrome) 

To calculate the distance |ST| along the orthodrome, the spherical rule of cosines is used. The 

theorem states, that the sides and angles of spherical triangles are analogous to the ordinary cosine 

rule from plane trigonometry. It is given by the equation (Roy, 2022): 

 

, 

where:  |ST|S - the distance between points S and T on the sphere, 

𝛼 - the central angle. 

The spherical rule of cosine formula is explained below: 

The Image 13 represents the two points on the sphere S, T with marked latitudes ɸ1, ɸ2 and the 

difference between their longitudes Δλ. The points S, T can be parametrized, so that their 3D 

Cartesian coordinates X, Y, Z are represented using latitude and longitude relation (Osborne, 2013): 

 

 

Let S and T be treated as a vectors: 

|ST |M = R ⋅
[(90∘ − ϕ2) − (90∘ − ϕ1)] ⋅ π

180∘

cosμ

α = arccos(sinϕ1sinϕ2 + cosϕ1cosϕ2cos(Δλ))

|ST |S =
α

360∘
⋅ C

S(cosϕ1cosλ1, cosϕ1sinλ1, sinϕ1)

T (cosϕ2cosλ2, cosϕ2sinλ2, sinϕ2)
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, 

. 

The angle 𝛼, between two vectors can be found using: 

 

Using the assumption, that the unit sphere is analyzed, the lengths of the vectors s, t are equal to 1. 

Thus, the formula simplifies to: 

 

After substitution, the formula presents as follows: 

 

 

s =
cosϕ1cosλ1

cosϕ1sinλ1

sinϕ1

t =
cosϕ2cosλ2

cosϕ2sinλ2

sinϕ2

 
Image 13: The scenario for calculating the distance on the sphere

cosα =
s ⋅ t

|s | | t |

cosα =
s ⋅ t
1 ⋅ 1

= s ⋅ t

cosα =
cosϕ1cosλ1

cosϕ1sinλ1

sinϕ1

⋅
cosϕ2cosλ2

cosϕ2sinλ2

sinϕ2

= (cosϕ1cosλ1)(cosϕ2cosλ2) + (cosϕ1sinλ1)(cosϕ2sinλ2) + (sinϕ1)(sinϕ2)

cosα = cosϕ1cosλ1cosϕ2cosλ2 + cosϕ1sinλ1cosϕ2sinλ2 + sinϕ1sinϕ2 = cosϕ1cosϕ2(cosλ1cosλ2 + sinλ1sinλ2) + sinϕ1 sin ϕ2
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Using trigonometric identity: 

, 

The formula simplifies to: 

  

 

The central angle 𝛼 is used as an inscribed angle to find an arc of the great circle that indicates the 

distance on the orthodrome. To leave the assumption that the Earth is a unit sphere, the length of an 

arc is multiplied by the circumference of the actual Earth dimension C. 

The real world example that will show the distance distortions between two places is presented 

below: 

The approximate coordinates of the cities are: 

San Francisco, United States - S(37.8°, -122.4°) 

Moscow, Russia - M(55.8°, 37.6°) 

For clearer visualization, the placement of cities on the sphere is represented by the diagram below: 

cos(λ2 − λ1) = cosλ1cosλ2 + sinλ1sinλ2

cosα = sinϕ1sinϕ2 + cosϕ1cosϕ2cos(Δλ)

α = arccos(sinϕ1sinϕ2 + cosϕ1cosϕ2cos(Δλ))

 
Image 14: Determining the distance between Moscow and San Francisco
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The difference between the latitudes Δɸ and longitudes Δλ between those two cities are: 

, 

. 

To calculate the distance along the orthodrome, the spherical rule of cosine is used (Equation 10): 

 

Thus, the distance along the orthodrome is (Equation 11): 

 

To calculate the distance |SM| along the loxodrome, the angle 𝜇 at which the loxodrome cuts the 

meridians is needed. Since the preservation of angles on the Mercator projection is not the topic of 

the work, the angle 𝜇 was found using an online website (Source 1) and measures 78.87°.  

Thus, the distance on the projection is (Equation 9): 

 

The difference between the distances Δd calculated is: 

. 

The distance on the Mercator projection (along the loxodrome marked with red) is longer than the 

distance on the sphere (along the loxodrome marked with yellow), which is illustrated on the image 

below (Image 15):  

Δλ = |λ1 − λ2 | = 37.6∘ − (−122.4∘) = 160.0∘

Δϕ = |ϕ1 − ϕ2 | = 55.8∘ − 37.8∘ = 18.0∘

α = arccos(sin55.8∘sin37.8∘ + cos55.8∘cos37.8∘cos160.0∘ = 84.86∘

|SM |s = C ⋅
α

360∘
= 40030 ⋅

84.86∘

360∘
≈ 9436 [k m]

|ST |M = R ⋅
[(90∘ − 37.8∘) − (90∘ − 55.8∘)] ⋅ π

180∘

cos78.87∘
≈ 10370 [k m]

Δd = |ST |M − |ST |S = 10370 − 9436 = 934 [k m]

 
Image 15: The comparison of the distance between Moscow and San Francisco dependently on the 

route (loxodrome and orthodrome)
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The correctness of the calculations can be supported by the external sources. A publication by 

Bertici & Herbei (Bertici & Herbei, 2014) suggests that the orthodromic distance should be 9476 

km and the loxodromic distance should be 10051 km. The percentage error of the calculations 

above is: 

For the distance along the orthodrome:  

 

For the distance along the loxodrome; 

 

The most probable sources of errors is discussed in the discussion section.  

Area sizes on the Mercator projection:  

The approach of calculating the area on the sphere depends on the size and the shape of the object. 

Since the analysis of the geometry of a sphere is not the aim of the work, the piece sufficient for the 

further comparison and analysis would be a relatively small, rectangular object. The formula for its 

area will be derived step by step. Such shape of the object was chosen, since the approach is clear 

for representation and will apply also in squared figures.  

For the small areas, the deviation of the curved area from the corresponding area on the plane is 

negligible. The areas between the arcs, marked with solid lines, and the cords, marked with dashed 

percentage error =
9476 − 9436

9476
⋅ 100 % = 0.422 %

percentage error =
|10051 − 10370 |

10051
⋅ 100 % = 3.17 %

 
Image 16: The features of the area KQMP on the sphere 
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lines, between any two points chosen are infinitesimal - they are so small, that they can be ignored 

throughout calculations (Image 16). Such areas can be mapped without using any projections 

(Osborne, 2013).  

The Cartesian coordinates of the points K, Q, P, M in the three dimensional system are: 

 

 

 

 

 

The following image represents an object KQPM on the sphere (Image 17). 

The latitude ɸ and longitude λ presented as a set of coordinates (ɸ , λ) for each of the points is 

(Equation 2 & 3): 

 

K(XK, YK, ZK)

Q(XQ, YQ, ZQ)

P(XP, YP, ZP)

M(XM, YM, ZM)

 
Image 17: The area KQMP on the sphere model

K(ϕK, λK) = K(arctan(
ZK

X2
K + Y 2

K

), arctan(
YK

XK
))
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Nevertheless, to improve readability the notation (ɸX , λX) will be kept.  

Since the object is a rectangle, the pair of sides KQ and PM and the second pair KP and MQ will be 

parallel. Thus: 

 

 

 

 

To calculate the area of KQPM, the lengths of the sides need to be calculated. Since, the object is a  

rectangle the difference between the longitudes Δλ is the same (Image 18). It can be determined 

using the formula: 

Q(ϕQ, λQ) = Q(arctan(
ZQ

X2
Q + Y 2

Q

), arctan(
YQ

XQ
))

P(ϕP, λP) = P(arctan(
ZP

X2
P + Y 2

P

), arctan(
YP

XP
))

M(ϕM, λM) = M(arctan(
ZM

X2
M + Y 2

M

), arctan(
YM

XM
))

ϕK = ϕQ

ϕP = ϕM

λK = λP

λQ = λM

 
Image 18: The length of KQ/QM on the sphere model 
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. 

Despite the fact, that KQ and PM lie on different parallels, the difference of their lengths will be 

negligible. To calculate their lengths, the length of the small circle p(ɸ) that they lie on should be 

calculated (Equation 1), and then the fraction of the parallel that the segment occupies must be 

determined. This relation is presented using the formula: 

 

where: |KQ| - length of a line segment.  

To calculate the area of the rectangle, also the length of the second side KP or QM should be found 

(Image 19). 

Since the model is a sphere, the distance form the origin O to the points K and P will be the same 

and its length will equal the length of a radius R. Hence, the triangle KOP will be isosceles. The 

value of the angle KOP is the difference between the latitudes ɸ of the points K and P: 

 

Thus, the value of the angles OKP and OPK is: 

 

Hence, using the sine rule, the length of a segment KP is: 

 

Δλ = ΔλKQ = ΔλPM = |λQ − λK | = |λM − λP |

|KQ | = |PM | = 2π p(ϕKQ)
ΔλKQ

360∘
= 2πRcosϕKQ

ΔλKQ

360∘

 
Image 19: The length of KP/QM on the sphere model 

∠KOP = Δϕ = ϕKQ − ϕPM

∠OKP = ∠OPK =
180∘ − ∠KOP

2

∠OKP
R

=
∠KOP
|KP |
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From the previous analysis, the general formula for the area A of a small rectangular object of the 

sphere is derived: 

  

where: A - area of an object. 

To check the correctness of the formula, the area of a rectangular Galeria Krakowska shopping mall 

in Cracow will be analyzed. The image below represents the object of interest on the map (Image 

20): 

Using CalcMaps website (Source 2), coordinates of the edges of the mall are found: 

 

  

 

 

|KP | =
R ⋅ ∠KOP

∠OKP

A = |KP | ⋅ |KQ | = (
Δϕ ⋅ R

180∘ − Δϕ
2

) ⋅ (2πRcosϕK/Q/M/P ⋅
Δλ

360∘
)

 
Image 20: Galeria Krakowska on the map 

K(50.0686∘, 19.9452∘)

Q(50.0686∘, 19.9467∘)

P(50.0660∘, 19.9452∘)

M(50.0660∘, 19.9467∘)
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The differences between the latitudes Δɸ and longitudes Δλ of the points are: 

 

 

So its area A is (Equation 12): 

 

The data for the area of three levels of commercial venues provided by online sources is 

approximately 60 000 m2 (Source 3). So for the one level, the area Alevel is: 

 

The percentage error of the calculations is: 

 

The most probable sources of errors will be discussed in the discussion section.  

The land sizes on the Mercator projection are distorted in relation to their true sizes (those measured 

on the sphere), which is a consequence of equal spacing of parallels on the projection (Equation 3). 

Let the same object KQPM be considered. The line segments KQ and PM are sketched along the 

parallel. Thus, after projection their true length will be elongated according to the parallel scale 

factor k: 

 

 

The influence of the vertical scale factor h on the line segment PK is checked: 

 

Thus, the area of the K’Q’P’M’ measured on the projection is: 

 

The area on the projection is larger than the area measured on the sphere. The percentage by which 

the projection was enlarged can be calculated: 

  

Δϕ = 50.0686∘ − 50.0660∘ = 0.0026∘

Δλ = 19.9467∘ − 19.9452∘ = 0.0015∘

A = (
0.0031∘ ⋅ 6371

180∘ − 0.0031∘

2

) ⋅ (2π ⋅ 6371 ⋅ cos(50.0691∘) ⋅
0.0015∘

360∘
) ≈ 19 706 [m2]

Alevel ≈
60 000

3
≈ 20 000 [m2]

percentage error ≈
20000 − 19706

20000
⋅ 100 % ≈ 1.47 %

|K′￼Q′￼| = |KQ | ⋅ k = |KQ | ⋅ sec(ϕ1)

|P′￼M′￼| = |PM | ⋅ k = |PM | ⋅ sec(ϕ2)

|K′￼P′￼| = |KP | ⋅ h = |KP | ⋅ sec(ϕ2 − ϕ1)

AK′￼Q′￼P′￼M′￼= |K′￼P′￼| ⋅ |K′￼Q′￼|

% ΔA =
AK′￼Q′￼P′￼M′￼− AKQPM

AKQPM
⋅ 100 %
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Discussion and conclusions: 

 

When it comes to the distortion of the areas, the Mercator projection maintains accurate sizes near 

the equator, which can be supported by analysis of the area of Democratic Republic of Congo. As 

the distance from the equator increases, the distortion also increases, which is a consequence of 

increasing parallel scale factor k (Image 10). Thus, the Mercator is not an accurate projection to 

determine the true size of an object. The size of an object is highly dependent on its latitude ɸ. It 

might also cause confusions when it comes to comparing the areas, as presented on the Image 11. 

Apart from analyzing the objects on the Mercator projection, the work has explored the aspect of 

negligibility of the variations between the areas of the small objects on the sphere and their 

projections (Image 16). However, the approach explored in this work does not apply to greater 

areas. 

When it comes to the distortions of the distances, on the Mercator projection they are determined 

along the loxodrome, while on the sphere the distance is determined along the orthodrome. The 

distances on the loxodrome are equal to the distances on the orthodrome only in two cases. The first 

one is along the meridians - the angle at which the loxodrome crosses the meridians 𝜇 then is 0. 

Thus, the formula for the distance simplifies as the value of cosine is 1 (Equation 9). It results in no 

elongation of the distance. The second one is the distance along the equator. All parallels on the 

Mercator projection are of equal length of the Earth circumference C, so the length of a pathway of 

a distance on the sphere and on the projection is exactly the same. When it comes to determining 

the distances located along the parallel different than the Equator or between the points located on 

different latitudes and longitudes, the distance on the loxodrome is longer. The greater the distance 

between two points, the greater the absolute difference between the distance measured along the 

loxodrome and along the orthodrome.  

The percentage errors obtained in the calculations related with real world examples are low, which 

indicates the accuracy of the results. That also implies that the formulae invented work. The 

fluctuations in the length of the distances might be caused by the precision of the Earth radius R 

used or by choosing the coordinates of the cities. In this exploration the one in the city centers were 

picked, however in the publication used for the comparison there was no information about the 

actual coordinates chosen. Moreover, the distance along the loxodrome might be impacted by the 
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precision of the bearing found. The distortion of the area size of a shopping mall can be caused by 

an inaccuracy in determining the coordinates of the edges. Also the webpage of reference does not 

provide such information.  

 

The main attribute of this work is the fact, that most of the formulae were either derived or proofed. 

It is worth mention, that the topic explored is of high practical relevance. Maps are the tools that are 

used daily - understanding the fundaments of the Mercator projection and the distortions  associated 

with it expands the awareness of the representation of the world and helps with its evaluation. 

However, the limitation of this work is not operating on the differential geometry. If it was applied, 

in case of calculating the areas on the sphere, the results yield might be more accurate. It will also 

allow for enhancing the understanding and proving the formula for the distance on the loxodrome. 

The possible extension of the research might be exploring other properties of the conformal map 

projection such as preservation of bearings after the projection or comparing the analyzed 

parameters of the Mercator projection with other type of projection, for example Lambert’s equal 

area projection.  
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